Shape Morphisms to Transitive $G$-Spaces
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 821-827
Cet article a éte moissonné depuis la source Math-Net.Ru
The following problem plays an important role in shape theory: find conditions that guarantee that a shape morphism $F\colon X\mapsto Y$ of a topological space $X$ to a topological space $Y$ is generated by a continuous mapping $f\colon X\mapsto Y$. In the present paper, we study this problem in equivariant shape theory and give a solution for shape-equivariant morphisms to transitive $G$-spaces, where $G$ is a compact group with countable base. As a corollary, we prove a sufficient condition for equivariant shapes of a $G$-space $X$ to be equal to the group $G$ itself. We also prove some statements concerning equivariant bundles that play the key role in the proof of the main results and are of interest on their own.
@article{MZM_2002_72_6_a3,
author = {P. S. Gevorgyan},
title = {Shape {Morphisms} to {Transitive} $G${-Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {821--827},
year = {2002},
volume = {72},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a3/}
}
P. S. Gevorgyan. Shape Morphisms to Transitive $G$-Spaces. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 821-827. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a3/
[1] Palais R. S., “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 36, 1960, 1–72
[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl
[3] Gleason A., “Spaces with a compact Lie group transformations”, Proc. Amer. Math. Soc., 1:1 (1950), 35–43 | DOI | MR | Zbl
[4] Pontryagin L. S., Nepreryvnye gruppy, Gostekhizdat, M., 1954
[5] Holsztynski W., “Continuity of Borsuk's shape functor”, Bull. Acad. Polon. Ski., 19:12 (1971), 1105–1108 | MR | Zbl