Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_6_a2, author = {V. S. Balaganskii}, title = {Necessary {Conditions} for {Differentiability} of {Distance} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {815--820}, publisher = {mathdoc}, volume = {72}, number = {6}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/} }
V. S. Balaganskii. Necessary Conditions for Differentiability of Distance Functions. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 815-820. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/
[1] Asplund E., “Čebyšev sets in Hilbert space”, Trans. Amer. Math. Soc., 144 (1969), 235–240 | DOI | MR | Zbl
[2] Fitzpatrick S., “Metric projections and the differentiability of distance functions”, Bull. Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl
[3] Fitzpatrick S., “Differentiation of real-valued functions and continuity of metric projections”, Proc. Amer. Math. Soc., 91:4 (1984), 544–548 | DOI | MR | Zbl
[4] Dudov S. I., “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl
[5] Dudov S. I., “Subdifferentsiruemost i funktsii rasstoyaniya”, Matem. zametki, 61:4 (1975), 530–542 | MR
[6] Balaganskii V. S., “Differentsiruemost po Freshe funktsii rasstoyaniya i struktura mnozhestva”, Matem. zametki, 44:6 (1988), 725–734 | MR
[7] Balaganskii V. S., “Dostatochnye usloviya differentsiruemosti metricheskoi funktsii”, Tr. Instituta matematiki i mekhaniki, 1, UrO RAN, Ekaterinburg, 1992, 84–89 | MR
[8] Balaganskii V. S., Vlasov L. P., “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (312) (1996), 125–188 | MR | Zbl
[9] Borwein J. M., Fitzpatrick S. P., Giles J. R., “The differentiability of real functions on normed linear spaces using generalized subgradients”, Math. Anal. Appl., 128:2 (1987), 512–534 | DOI | MR | Zbl
[10] Zajíček L., “Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space”, Czech. Math. J., 33 (108) (1983), 292–308 | MR | Zbl
[11] Balaganskii V. S., “Ob approksimativnykh svoistvakh mnozhestv s vypuklym dopolneniem”, Matem. zametki, 57:1 (1995), 20–29 | MR | Zbl