Necessary Conditions for Differentiability of Distance Functions
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 815-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions for the Gâteaux differentiability of the distance function to a set are considered. A series of characterizing results is obtained.
@article{MZM_2002_72_6_a2,
     author = {V. S. Balaganskii},
     title = {Necessary {Conditions} for {Differentiability} of {Distance} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {815--820},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Necessary Conditions for Differentiability of Distance Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 815
EP  - 820
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/
LA  - ru
ID  - MZM_2002_72_6_a2
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Necessary Conditions for Differentiability of Distance Functions
%J Matematičeskie zametki
%D 2002
%P 815-820
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/
%G ru
%F MZM_2002_72_6_a2
V. S. Balaganskii. Necessary Conditions for Differentiability of Distance Functions. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 815-820. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a2/

[1] Asplund E., “Čebyšev sets in Hilbert space”, Trans. Amer. Math. Soc., 144 (1969), 235–240 | DOI | MR | Zbl

[2] Fitzpatrick S., “Metric projections and the differentiability of distance functions”, Bull. Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl

[3] Fitzpatrick S., “Differentiation of real-valued functions and continuity of metric projections”, Proc. Amer. Math. Soc., 91:4 (1984), 544–548 | DOI | MR | Zbl

[4] Dudov S. I., “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl

[5] Dudov S. I., “Subdifferentsiruemost i funktsii rasstoyaniya”, Matem. zametki, 61:4 (1975), 530–542 | MR

[6] Balaganskii V. S., “Differentsiruemost po Freshe funktsii rasstoyaniya i struktura mnozhestva”, Matem. zametki, 44:6 (1988), 725–734 | MR

[7] Balaganskii V. S., “Dostatochnye usloviya differentsiruemosti metricheskoi funktsii”, Tr. Instituta matematiki i mekhaniki, 1, UrO RAN, Ekaterinburg, 1992, 84–89 | MR

[8] Balaganskii V. S., Vlasov L. P., “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (312) (1996), 125–188 | MR | Zbl

[9] Borwein J. M., Fitzpatrick S. P., Giles J. R., “The differentiability of real functions on normed linear spaces using generalized subgradients”, Math. Anal. Appl., 128:2 (1987), 512–534 | DOI | MR | Zbl

[10] Zajíček L., “Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space”, Czech. Math. J., 33 (108) (1983), 292–308 | MR | Zbl

[11] Balaganskii V. S., “Ob approksimativnykh svoistvakh mnozhestv s vypuklym dopolneniem”, Matem. zametki, 57:1 (1995), 20–29 | MR | Zbl