The Brauer and Witt Groups of Real Ruled Surfaces
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 706-714.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Brauer group and the Witt group of a real irrational ruled surface are determined by using equivariant cohomology.
@article{MZM_2002_72_5_a8,
     author = {V. A. Krasnov},
     title = {The {Brauer} and {Witt} {Groups} of {Real} {Ruled} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {706--714},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The Brauer and Witt Groups of Real Ruled Surfaces
JO  - Matematičeskie zametki
PY  - 2002
SP  - 706
EP  - 714
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/
LA  - ru
ID  - MZM_2002_72_5_a8
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The Brauer and Witt Groups of Real Ruled Surfaces
%J Matematičeskie zametki
%D 2002
%P 706-714
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/
%G ru
%F MZM_2002_72_5_a8
V. A. Krasnov. The Brauer and Witt Groups of Real Ruled Surfaces. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 706-714. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/

[1] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl

[2] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and Its Applications, Yaroslavl, 1992, 114–136

[3] van Hamel J., Equivariant Borel–Moore homology and Poincaré duality for discrete transformation groups, Preprint

[4] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN Ser. matem., 60:5 (1996), 57–88 | MR | Zbl

[5] Krasnov V. A., “O gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 60:6 (1996), 935–938 | MR | Zbl

[6] Sujatha R., “Witt groups of real projective surfaces”, Math. Ann., 288 (1990), 89–101 | DOI | MR | Zbl

[7] Krasnov V. A., “Etalnye i ekvivariantnye kogomologii veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem. (to appear)

[8] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746

[9] Kalinin I. O., “Kogomologicheskie kharakteristiki veschestvennykh proektivnykh giperpoverkhnostei”, Algebra i analiz, 3:2 (1991), 91–110 | MR