Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_5_a8, author = {V. A. Krasnov}, title = {The {Brauer} and {Witt} {Groups} of {Real} {Ruled} {Surfaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {706--714}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/} }
V. A. Krasnov. The Brauer and Witt Groups of Real Ruled Surfaces. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 706-714. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a8/
[1] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl
[2] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and Its Applications, Yaroslavl, 1992, 114–136
[3] van Hamel J., Equivariant Borel–Moore homology and Poincaré duality for discrete transformation groups, Preprint
[4] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN Ser. matem., 60:5 (1996), 57–88 | MR | Zbl
[5] Krasnov V. A., “O gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 60:6 (1996), 935–938 | MR | Zbl
[6] Sujatha R., “Witt groups of real projective surfaces”, Math. Ann., 288 (1990), 89–101 | DOI | MR | Zbl
[7] Krasnov V. A., “Etalnye i ekvivariantnye kogomologii veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem. (to appear)
[8] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746
[9] Kalinin I. O., “Kogomologicheskie kharakteristiki veschestvennykh proektivnykh giperpoverkhnostei”, Algebra i analiz, 3:2 (1991), 91–110 | MR