Type Numbers of Critical Points for Nonsmooth Functionals
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 693-705

Voir la notice de l'article provenant de la source Math-Net.Ru

Type numbers of critical points for Lipschitz functionals are studied. Versions of the Morse inequalities are established; it is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers. Formulas for calculating the type numbers of the zero critical point of one functional are given.
@article{MZM_2002_72_5_a7,
     author = {V. S. Klimov},
     title = {Type {Numbers} of {Critical} {Points} for {Nonsmooth} {Functionals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--705},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Type Numbers of Critical Points for Nonsmooth Functionals
JO  - Matematičeskie zametki
PY  - 2002
SP  - 693
EP  - 705
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/
LA  - ru
ID  - MZM_2002_72_5_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Type Numbers of Critical Points for Nonsmooth Functionals
%J Matematičeskie zametki
%D 2002
%P 693-705
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/
%G ru
%F MZM_2002_72_5_a7
V. S. Klimov. Type Numbers of Critical Points for Nonsmooth Functionals. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 693-705. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/