Type Numbers of Critical Points for Nonsmooth Functionals
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 693-705.

Voir la notice de l'article provenant de la source Math-Net.Ru

Type numbers of critical points for Lipschitz functionals are studied. Versions of the Morse inequalities are established; it is shown that the topological index of an isolated critical point is equal to the alternated sum of its type numbers. Formulas for calculating the type numbers of the zero critical point of one functional are given.
@article{MZM_2002_72_5_a7,
     author = {V. S. Klimov},
     title = {Type {Numbers} of {Critical} {Points} for {Nonsmooth} {Functionals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {693--705},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Type Numbers of Critical Points for Nonsmooth Functionals
JO  - Matematičeskie zametki
PY  - 2002
SP  - 693
EP  - 705
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/
LA  - ru
ID  - MZM_2002_72_5_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Type Numbers of Critical Points for Nonsmooth Functionals
%J Matematičeskie zametki
%D 2002
%P 693-705
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/
%G ru
%F MZM_2002_72_5_a7
V. S. Klimov. Type Numbers of Critical Points for Nonsmooth Functionals. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 693-705. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a7/

[1] Zeifert G., Trelfall V., Variatsionnoe ischislenie v tselom, IL, M., 1947

[2] Skrypnik I. V., “Razreshimost i svoistva reshenii nelineinykh ellipticheskikh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, M., 1976, 131–254

[3] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973

[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984

[5] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Izd-vo “Magistr”, M., 1998

[6] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funktsion. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[7] Browder F. E., “Nonlinear elliptic boundary value problems and the generalized topological degree”, Bull. Amer. Math. Soc., 76:5 (1970), 999–1005 | DOI | MR | Zbl

[8] Klimov V. S., “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | MR | Zbl

[9] Klimov V. S., Senchakova N. V., “Ob otnositelnom vraschenii mnogoznachnykh potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407

[10] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[11] Borisovich Yu. G., “Ob otnositelnom vraschenii kompaktnykh vektornykh polei v lineinykh prostranstvakh”, Tr. seminara po funkts. analizu, no. 12, Izd-vo Voronezhskogo un-ta, Voronezh, 1969, 3–27

[12] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[13] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | Zbl

[15] Klimov V. S., “Minimaksnye kriticheskie znacheniya negladkikh funktsionalov”, Sib. matem. zh., 33:3 (1992), 91–100 | MR | Zbl

[16] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976

[17] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981

[18] Mukhamadiev E., “Ogranichennye resheniya i gomotopicheskie invarianty nelineinykh differentsialnykh uravnenii”, Dokl. RAN, 351:5 (1996), 596–598 | MR | Zbl