Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Hardy space $H_{p,\rho }$ ($p\ge 1$, $0\rho \le 1$, $H_{p,1}\equiv H_p$) we develop best linear approximation methods (previously studied by Taikov and Ainulloev) for the classes $W(r,\Phi ,\mu )$ of analytic functions on the unit disk and calculate the exact values of linear, Gelfand, and informational $n$-widths of these classes.
@article{MZM_2002_72_5_a3,
     author = {S. B. Vakarchuk},
     title = {Exact {Values} of {Widths} of {Classes} of {Analytic} {Functions} on the {Disk} and {Best} {Linear} {Approximation} {Methods}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--669},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
JO  - Matematičeskie zametki
PY  - 2002
SP  - 665
EP  - 669
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/
LA  - ru
ID  - MZM_2002_72_5_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
%J Matematičeskie zametki
%D 2002
%P 665-669
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/
%G ru
%F MZM_2002_72_5_a3
S. B. Vakarchuk. Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/