Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Hardy space $H_{p,\rho }$ ($p\ge 1$, $0\rho \le 1$, $H_{p,1}\equiv H_p$) we develop best linear approximation methods (previously studied by Taikov and Ainulloev) for the classes $W(r,\Phi ,\mu )$ of analytic functions on the unit disk and calculate the exact values of linear, Gelfand, and informational $n$-widths of these classes.
@article{MZM_2002_72_5_a3,
     author = {S. B. Vakarchuk},
     title = {Exact {Values} of {Widths} of {Classes} of {Analytic} {Functions} on the {Disk} and {Best} {Linear} {Approximation} {Methods}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--669},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
JO  - Matematičeskie zametki
PY  - 2002
SP  - 665
EP  - 669
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/
LA  - ru
ID  - MZM_2002_72_5_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
%J Matematičeskie zametki
%D 2002
%P 665-669
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/
%G ru
%F MZM_2002_72_5_a3
S. B. Vakarchuk. Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/

[1] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[2] Babenko K. I., “O nailuchshikh priblizheniyakh odnogo klassa funktsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 631–640 | MR | Zbl

[3] Taikov L. V., “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 22:2 (1977), 285–295 | MR | Zbl

[4] Ainulloev N., Taikov L. V., “Nailuchshee priblizhenie v smysle Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351 | MR

[5] Farkov Yu. A., “Poperechniki klassov Khardi i Bergmana iz $C^n$”, UMN, 45:5 (1990), 197–198 | MR | Zbl

[6] Fisher S. D., Stessin M. I., “The $n$-width of the unit ball of $H^q$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl

[7] Vakarchuk S. B., “Nailuchshie lineinye metody priblizheniya i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1 (1995), 30–39 | MR

[8] Vakarchuk S. B., “O nailuchshikh lineinykh metodakh priblizheniya i poperechnikakh nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 65:2 (1999), 186–193 | MR | Zbl

[9] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985

[10] Osipenko K. Yu., “O tochnykh znacheniyakh $n$-poperechnikov na klassakh, zadavaemykh operatorami, ne uvelichivayuschimi ostsillyatsii”, Matem. sb., 188:9 (1997), 113–126 | MR | Zbl

[11] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965