Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669
Voir la notice de l'article provenant de la source Math-Net.Ru
In the Hardy space $H_{p,\rho }$ ($p\ge 1$, $0\rho \le 1$, $H_{p,1}\equiv H_p$) we develop best linear approximation methods (previously studied by Taikov and Ainulloev) for the classes $W(r,\Phi ,\mu )$ of analytic functions on the unit disk and calculate the exact values of linear, Gelfand, and informational $n$-widths of these classes.
@article{MZM_2002_72_5_a3,
author = {S. B. Vakarchuk},
title = {Exact {Values} of {Widths} of {Classes} of {Analytic} {Functions} on the {Disk} and {Best} {Linear} {Approximation} {Methods}},
journal = {Matemati\v{c}eskie zametki},
pages = {665--669},
publisher = {mathdoc},
volume = {72},
number = {5},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/}
}
TY - JOUR AU - S. B. Vakarchuk TI - Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods JO - Matematičeskie zametki PY - 2002 SP - 665 EP - 669 VL - 72 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/ LA - ru ID - MZM_2002_72_5_a3 ER -
S. B. Vakarchuk. Exact Values of Widths of Classes of Analytic Functions on the Disk and Best Linear Approximation Methods. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 665-669. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a3/