On the Structure of Spaces of Polyanalytic Functions
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 750-764

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $A_mL_p(D,\alpha)$ is the space of all $m$-analytic functions on the disk $D=\{z:|z|1\}$ which are $p$th power integrable over area with the weight $(1-|z|^2)^\alpha$, $\alpha >-1$. In the paper, we introduce subspaces $A_kL_p^0(D,\alpha)$, $k=1,2,\dots,m$, of the space $A_mL_p(D,\alpha)$ and prove that $A_mL_p(D,\alpha)$ is the direct sum of these subspaces. These results are used to obtain growth estimates of derivatives of polyanalytic functions near the boundary of arbitrary domains.
@article{MZM_2002_72_5_a14,
     author = {A.-R. K. Ramazanov},
     title = {On the {Structure} of {Spaces} of {Polyanalytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--764},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
TI  - On the Structure of Spaces of Polyanalytic Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 750
EP  - 764
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/
LA  - ru
ID  - MZM_2002_72_5_a14
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%T On the Structure of Spaces of Polyanalytic Functions
%J Matematičeskie zametki
%D 2002
%P 750-764
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/
%G ru
%F MZM_2002_72_5_a14
A.-R. K. Ramazanov. On the Structure of Spaces of Polyanalytic Functions. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 750-764. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/