On the Structure of Spaces of Polyanalytic Functions
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 750-764.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $A_mL_p(D,\alpha)$ is the space of all $m$-analytic functions on the disk $D=\{z:|z|1\}$ which are $p$th power integrable over area with the weight $(1-|z|^2)^\alpha$, $\alpha >-1$. In the paper, we introduce subspaces $A_kL_p^0(D,\alpha)$, $k=1,2,\dots,m$, of the space $A_mL_p(D,\alpha)$ and prove that $A_mL_p(D,\alpha)$ is the direct sum of these subspaces. These results are used to obtain growth estimates of derivatives of polyanalytic functions near the boundary of arbitrary domains.
@article{MZM_2002_72_5_a14,
     author = {A.-R. K. Ramazanov},
     title = {On the {Structure} of {Spaces} of {Polyanalytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--764},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
TI  - On the Structure of Spaces of Polyanalytic Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 750
EP  - 764
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/
LA  - ru
ID  - MZM_2002_72_5_a14
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%T On the Structure of Spaces of Polyanalytic Functions
%J Matematičeskie zametki
%D 2002
%P 750-764
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/
%G ru
%F MZM_2002_72_5_a14
A.-R. K. Ramazanov. On the Structure of Spaces of Polyanalytic Functions. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 750-764. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a14/

[1] Balk M. B., Polyanalytic Functions, Akad. Verlag, Berlin, 1991 | Zbl

[2] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Dokl. RAN, 338:5 (1994), 585–588 | Zbl

[3] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Matem. zametki, 63:6 (1998), 821–834 | MR | Zbl

[4] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii reshenii obobschennogo uravneniya Koshi–Rimana”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 3, 16–25 | MR | Zbl

[5] Ramazanov A. K., “Ob ortogonalnykh proektorakh v prostranstvakh polianaliticheskikh funktsii”, Izv. Tulskogo gos. un-ta. Ser. matem., mekh., informatika, 4:1 (1998), 117–122 | MR

[6] Ramazanov A. K., “Predstavlenie prostranstva polianaliticheskikh funktsii v vide pryamoi summy ortogonalnykh podprostranstv. Prilozhenie k ratsionalnym approksimatsiyam”, Matem. zametki, 66:5 (1999), 741–759 | MR | Zbl

[7] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii proizvodnykh polianaliticheskikh funktsii”, Sovremennye problemy teorii funktsii, Tezisy dokl. 9-i Saratovskoi zimnei shkoly, Saratov, 1997, 54

[8] Zakharyuta V. P., Yudovich V. I., “Obschii vid lineinogo funktsionala v $H'_p$”, UMN, 19:2 (1964), 139–142 | MR | Zbl

[9] Burbea J., “The Bergman projection over plane regions”, Ark. Mat., 18:2 (1980), 207–221 | DOI | MR | Zbl

[10] Solovev A. A., “Otsenki v $L_p$ integralnykh operatorov, svyazannykh s prostranstvami analiticheskikh i garmonicheskikh funktsii”, Sib. matem. zh., 26:3 (1985), 168–191 | MR | Zbl

[11] Vasin A. V., “Proektory na $L^p$-prostranstva polianaliticheskikh funktsii”, Zapiski nauch. sem. LOMI, 190, Nauka, L., 1991, 15–33

[12] Koshelev A. D., “O kern-funktsii dlya gilbertova prostranstva polianaliticheskikh funktsii v kruge”, Dokl. AN SSSR, 232:2 (1977), 277–279 | MR | Zbl

[13] Vyacheslavov N. S., Ramazanov A. K., “Interpolyatsionnye svoistva ratsionalnykh funktsii nailuchshego priblizheniya v srednem kvadraticheskom na okruzhnosti i v kruge”, Matem. zametki, 57:2 (1995), 228–239 | MR | Zbl

[14] Duren P. L., Theory of $H^p$ Spaces, Academic Press, New York, 1970

[15] Zabulenis A., “O differentsialnom operatore v prostranstvakh analiticheskikh funktsii”, Litovskii matem. zh., 24:1 (1984), 53–58 | MR

[16] Rudin U., Teoriya funktsii v edinichnom share iz $\mathscr C^n$, M., 1984