Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 745-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of the calculus of variations for second-order nonlinear and linear systems of differential-difference equations is considered. The relationship between the formal potentiality of a linear system with constant coefficients and the parity of its characteristic function is established.
@article{MZM_2002_72_5_a13,
     author = {A. M. Popov},
     title = {Inverse {Problem} of the {Calculus} of {Variations} for {Systems} of {Differential-Difference} {Equations} of {Second} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--749},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/}
}
TY  - JOUR
AU  - A. M. Popov
TI  - Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order
JO  - Matematičeskie zametki
PY  - 2002
SP  - 745
EP  - 749
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/
LA  - ru
ID  - MZM_2002_72_5_a13
ER  - 
%0 Journal Article
%A A. M. Popov
%T Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order
%J Matematičeskie zametki
%D 2002
%P 745-749
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/
%G ru
%F MZM_2002_72_5_a13
A. M. Popov. Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 745-749. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/

[1] Filippov V. M., Savchin V. M., Shorokhov S. G., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 40, VINITI, M., 1992

[2] Gelmgolts G., “O fizicheskom znachenii printsipa naimenshego deistviya”, Variatsionnye printsipy mekhaniki, ed. L. S. Polak, M., 1959, 430–459

[3] Popov A. M., “Usloviya potentsialnosti Gelmgoltsa dlya sistem differentsialno-raznostnykh uravnenii”, Matem. zametki, 64:3 (1998), 437–442 | MR | Zbl

[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | Zbl