Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 745-749
Cet article a éte moissonné depuis la source Math-Net.Ru
The inverse problem of the calculus of variations for second-order nonlinear and linear systems of differential-difference equations is considered. The relationship between the formal potentiality of a linear system with constant coefficients and the parity of its characteristic function is established.
@article{MZM_2002_72_5_a13,
author = {A. M. Popov},
title = {Inverse {Problem} of the {Calculus} of {Variations} for {Systems} of {Differential-Difference} {Equations} of {Second} {Order}},
journal = {Matemati\v{c}eskie zametki},
pages = {745--749},
year = {2002},
volume = {72},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/}
}
TY - JOUR AU - A. M. Popov TI - Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order JO - Matematičeskie zametki PY - 2002 SP - 745 EP - 749 VL - 72 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/ LA - ru ID - MZM_2002_72_5_a13 ER -
A. M. Popov. Inverse Problem of the Calculus of Variations for Systems of Differential-Difference Equations of Second Order. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 745-749. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a13/
[1] Filippov V. M., Savchin V. M., Shorokhov S. G., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 40, VINITI, M., 1992
[2] Gelmgolts G., “O fizicheskom znachenii printsipa naimenshego deistviya”, Variatsionnye printsipy mekhaniki, ed. L. S. Polak, M., 1959, 430–459
[3] Popov A. M., “Usloviya potentsialnosti Gelmgoltsa dlya sistem differentsialno-raznostnykh uravnenii”, Matem. zametki, 64:3 (1998), 437–442 | MR | Zbl
[4] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | Zbl