On the Prime Radical of $PI$-Representable Groups
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 739-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $PI$-representable groups is introduced; these are subgroups of invertible elements of a $PI$-algebra over a field. It is shown that a $PI$-representable group has a largest locally solvable normal subgroup, and this subgroup coincides with the prime radical of the group. The prime radical of a finitely generated $PI$-representable group is solvable. The class of $PI$-representable groups is a generalization of the class of linear groups because in the groups of the former class the largest locally solvable normal subgroup can be not solvable.
@article{MZM_2002_72_5_a12,
     author = {S. A. Pikhtilkov},
     title = {On the {Prime} {Radical} of $PI${-Representable} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--744},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/}
}
TY  - JOUR
AU  - S. A. Pikhtilkov
TI  - On the Prime Radical of $PI$-Representable Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 739
EP  - 744
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/
LA  - ru
ID  - MZM_2002_72_5_a12
ER  - 
%0 Journal Article
%A S. A. Pikhtilkov
%T On the Prime Radical of $PI$-Representable Groups
%J Matematičeskie zametki
%D 2002
%P 739-744
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/
%G ru
%F MZM_2002_72_5_a12
S. A. Pikhtilkov. On the Prime Radical of $PI$-Representable Groups. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 739-744. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/

[1] Beidar K. I., Pikhtilkov S. A., “Pervichnyi radikal spetsialnykh algebr Li”, Fundament. i prikl. matem., 6:3 (2000), 643–648 | MR | Zbl

[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1996 | Zbl

[3] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980

[4] Baumslag G., Kovacs L. G., Neumann B. H., “On products of normal subgroups”, Acta Sci. Math., 26 (1965), 145–147 | MR | Zbl

[5] Schukin K. I., “$RI^*$-razreshimyi radikal grupp”, Matem. sb., 52:4 (1960), 1021–1031 | MR | Zbl

[6] Buys A., Gerber G. K., “The prime radical for $\Omega$-groups”, Comm. Algebra, 10 (1982), 1089–1099 | DOI | MR | Zbl

[7] Golubchik I. Z., Mikhalev A. V., “Izomorfizmy unitarnykh grupp nad assotsiativnymi koltsami”, Zapiski nauchn. seminarov LOMI AN SSSR, 132, Nauka, L., 1983, 97–109 | MR

[8] Mikhalev A. V., Shatalova M. A., “Pervichnyi radikal $\Omega$-grupp i $\Omega$-$l$-grupp”, Fundament. i prikl. matem., 4:4 (1998), 1405–1413 | MR | Zbl

[9] Golubkov A. Yu., “Pervichnyi ($RI^*$-razreshimyi) radikal unitarnoi gruppy nad koltsom s involyutsiei”, Fundament. i prikl. matem., 6:1 (2000), 93–119 | MR | Zbl

[10] Zhang Zhirang, “The locally solvable radical of locally finite groups”, South-East Asian Bull. Math., 22 (1998), 325–329 | Zbl

[11] Zhang Zhirang, Yang Wenze, “The locally solvable radical of torsion groups”, Comm. Algebra, 28 (2000), 3987–3991 | DOI | MR | Zbl

[12] Jacobson N., $PI$-Algebras, Springer-Verlag, Berlin–Heidelberg–New York, 1975

[13] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavleniya, Nauka, M., 1989 | Zbl

[14] Kemer A. R., “Tozhdestva Kapelli i nilpotentnost radikala konechno porozhdennoi $PI$-algebry”, Dokl. AN SSSR, 245:4 (1980), 793–797 | MR

[15] Braun A., “The nilpotency of the radical in a finitely generated $PI$-ring”, J. Algebra, 89 (1984), 375–396 | DOI | MR | Zbl

[16] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972

[17] Lambek I., Koltsa i moduli, Mir, M., 1971 | Zbl

[18] Passman D. S., “Group rings satisfying a polynomial identity”, J. Algebra, 20 (1972), 103–117 | DOI | MR | Zbl

[19] Razmyslov Yu. P., “Ob engelevykh algebrakh Li”, Algebra i logika, 10:1 (1971), 33–44 | MR | Zbl

[20] Dnestrovskaya tetrad, IM SO AN SSSR, Novosibirsk, 1976