On the Prime Radical of $PI$-Representable Groups
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 739-744

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $PI$-representable groups is introduced; these are subgroups of invertible elements of a $PI$-algebra over a field. It is shown that a $PI$-representable group has a largest locally solvable normal subgroup, and this subgroup coincides with the prime radical of the group. The prime radical of a finitely generated $PI$-representable group is solvable. The class of $PI$-representable groups is a generalization of the class of linear groups because in the groups of the former class the largest locally solvable normal subgroup can be not solvable.
@article{MZM_2002_72_5_a12,
     author = {S. A. Pikhtilkov},
     title = {On the {Prime} {Radical} of $PI${-Representable} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--744},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/}
}
TY  - JOUR
AU  - S. A. Pikhtilkov
TI  - On the Prime Radical of $PI$-Representable Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 739
EP  - 744
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/
LA  - ru
ID  - MZM_2002_72_5_a12
ER  - 
%0 Journal Article
%A S. A. Pikhtilkov
%T On the Prime Radical of $PI$-Representable Groups
%J Matematičeskie zametki
%D 2002
%P 739-744
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/
%G ru
%F MZM_2002_72_5_a12
S. A. Pikhtilkov. On the Prime Radical of $PI$-Representable Groups. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 739-744. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a12/