Riesz Bases Generated by Contractions and Translations of a Function on an Interval
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 547-560
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions for a system of contractions and translations of a function to be a Riesz basis are given.
@article{MZM_2002_72_4_a7,
author = {P. A. Terekhin},
title = {Riesz {Bases} {Generated} by {Contractions} and {Translations} of a {Function} on an {Interval}},
journal = {Matemati\v{c}eskie zametki},
pages = {547--560},
year = {2002},
volume = {72},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a7/}
}
P. A. Terekhin. Riesz Bases Generated by Contractions and Translations of a Function on an Interval. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 547-560. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a7/
[1] Filippov V. I., Oswald P., “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[2] Saburova T. N., “O bazisakh v $C[0,1]$ tipa Fabera–Shaudera”, Teoriya funktsii i priblizhenii, Tr. 3-i Saratovskoi zimnei shkoly. Ch. 3 (Saratov, 1986), Saratov, 1988, 44–46
[3] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | Zbl
[4] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970
[5] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[6] Krein S. G. (red.), Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972