Synthesis of State Descriptors in the Problem of Multiprogram Stabilization of Bilinear Systems
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 535-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the problem of stabilizing a family of program motions of a bilinear nonstationary system with the help of a nonlinear full-order state descriptor for this system and a nonlinear Luenberger descriptor is considered. Methods to synthesize such descriptors and to construct a multiprogram stabilizing control in the form of nonlinear feedback are suggested. Theorems on sufficient conditions for the existence of a solution of the above problem are proved.
@article{MZM_2002_72_4_a6,
     author = {N. V. Smirnov},
     title = {Synthesis of {State} {Descriptors} in the {Problem} of {Multiprogram} {Stabilization} of {Bilinear} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {535--546},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a6/}
}
TY  - JOUR
AU  - N. V. Smirnov
TI  - Synthesis of State Descriptors in the Problem of Multiprogram Stabilization of Bilinear Systems
JO  - Matematičeskie zametki
PY  - 2002
SP  - 535
EP  - 546
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a6/
LA  - ru
ID  - MZM_2002_72_4_a6
ER  - 
%0 Journal Article
%A N. V. Smirnov
%T Synthesis of State Descriptors in the Problem of Multiprogram Stabilization of Bilinear Systems
%J Matematičeskie zametki
%D 2002
%P 535-546
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a6/
%G ru
%F MZM_2002_72_4_a6
N. V. Smirnov. Synthesis of State Descriptors in the Problem of Multiprogram Stabilization of Bilinear Systems. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 535-546. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a6/

[1] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975 | Zbl

[2] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976

[3] Luenberger D. G., “Observers for multivariable systems”, IEEE Trans. Autom. Control, AC–11:2, 190–197

[4] Zubov V. I., “Interpolyatsiya sistem differentsialnykh uravnenii”, Dokl. AN SSSR, 318:1 (1991), 28–31 | Zbl

[5] Zubov V. I., “Sintez mnogoprogrammnykh ustoichivykh upravlenii”, Dokl. AN SSSR, 318:2 (1991), 274–277 | Zbl

[6] Smirnov N. V., Smirnova T. E., “The problem of the stabilization for some programmed motions of the bilinear stationary system”, Proc. of Third Int. Workshop: “Beam Dynamics Optimization”, NIICh SPbSU, St-Petersburg, 1997, 258–263

[7] Smirnov N. V., Smirnova T. E., “Stabilizatsiya semeistva programmnykh dvizhenii bilineinoi nestatsionarnoi sistemy”, Vest. SPbGU. Ser. 1, 2:8 (1998), 70–75 | MR | Zbl

[8] Smirnov N. V., Smirnova T. E., “Sintez mnogoprogrammnykh upravlenii v bilineinykh sistemakh”, PMM, 64:6 (2000), 929–932 | MR | Zbl

[9] Svoronos S., Stephanopolos G., Aris R., “Bilinear approximation of general non-linear dynamic systems with linear inputs”, Int. J. Control, 31:1 (1980), 109–126 | DOI | MR | Zbl

[10] Smirnov N. V., “Synthesis of multiprogrammed stable controls using the Luenberger observer”, Prep. of 11th IFAC Int. Workshop “Control Applications of Optimization”, V. 1, NIICh SPbSU, St-Petersburg, 2000, 317–320

[11] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[12] Smirnov E. Ya., Nekotorye zadachi matematicheskoi teorii upravleniya, LGU, L., 1981

[13] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | Zbl