Lower Bounds for $n$-Term Approximations of Plane Convex Sets and Related Topics
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 509-515.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish lower bounds for $n$-term approximations in the metric of$L^2(I^2)$ of characteristic functions of plane convex subsets of the square $I^2$ with respect to arbitrary orthogonal systems. It is shown that, as $n\to \infty $, these bounds cannot decrease more rapidly than $1/n$.
@article{MZM_2002_72_4_a3,
     author = {B. S. Kashin},
     title = {Lower {Bounds} for $n${-Term} {Approximations} of {Plane} {Convex} {Sets} and {Related} {Topics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--515},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a3/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - Lower Bounds for $n$-Term Approximations of Plane Convex Sets and Related Topics
JO  - Matematičeskie zametki
PY  - 2002
SP  - 509
EP  - 515
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a3/
LA  - ru
ID  - MZM_2002_72_4_a3
ER  - 
%0 Journal Article
%A B. S. Kashin
%T Lower Bounds for $n$-Term Approximations of Plane Convex Sets and Related Topics
%J Matematičeskie zametki
%D 2002
%P 509-515
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a3/
%G ru
%F MZM_2002_72_4_a3
B. S. Kashin. Lower Bounds for $n$-Term Approximations of Plane Convex Sets and Related Topics. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 509-515. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a3/

[1] DeVore R. A., “Nonlinear approximation”, Acta Numerica, 7 (1998), 51–150 | DOI | MR | Zbl

[2] Temlyakov V. N., Nonlinear Methods of Approximations, IMI Preprint 2001:09, University of South Carolina, 2001

[3] Kashin B. S., “On lower estimates for $n$-term approximation in Hilbert space”, Approximation Theory, Volume Dedicated to B. Sendov, Darba, Sofia, 2002, 241–257 | MR | Zbl

[4] Kashin B. S., “Ob approksimatsionnykh svoistvakh polnykh ortonormirovannykh sistem”, Tr. MIAN, 172, Nauka, M., 1985, 187–191 | MR | Zbl

[5] Cohen A., DeVore R., Petrushev P., Xu H., “Nonlinear approximation and the Space $BV(\mathbb R^2)$”, Amer. J. Math., 121 (1999), 587–628 | DOI | MR | Zbl

[6] Donoho D. L., “Sparse components of images and optimal atomic decompositions”, Constr. Approx., 17:3 (2001), 353–382 | DOI | MR | Zbl

[7] Dobeshi I., Desyat lektsii po veivletam, RKhD, M.–Izhevsk, 2001

[8] Kashin B. S., Kulikova T. Yu., “Zamechanie ob approksimatsionnykh svoistvakh freimov obschego vida”, Matem. zametki, 72:2 (2002), 312–315 | MR | Zbl

[9] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, 2-e izd., AFTs, M., 1999

[10] Agnew R. P., “On double orthogonal series”, Proc. London Math. Soc. Ser. 2, 33:6 (1932), 420–434 | DOI | MR | Zbl

[11] Moricz F., “Multiparameter strong laws of large numbers, I”, Acta Sci. Math., 40 (1978), 143–156 | MR | Zbl

[12] Kashin B. S., “O koeffitsientakh razlozheniya odnogo klassa funktsii po polnym sistemam”, Sib. matem. zh., 18:1 (1977), 122–131 | MR | Zbl