Orbits and Invariants of Third-Order Cubic Matrices with Symmetric Fibers
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 483-489
Cet article a éte moissonné depuis la source Math-Net.Ru
In the note, for an action which is the tensor product of the tautological action of the unimodular group of three-dimensional space and the second symmetric power of the tautological action of the unimodular group of three-dimensional space, the orbits are classified and the generators of the algebra of invariants are described.
@article{MZM_2002_72_4_a0,
author = {A. G. Nurmiev and D. I. Artamkin},
title = {Orbits and {Invariants} of {Third-Order} {Cubic} {Matrices} with {Symmetric} {Fibers}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--489},
year = {2002},
volume = {72},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a0/}
}
A. G. Nurmiev; D. I. Artamkin. Orbits and Invariants of Third-Order Cubic Matrices with Symmetric Fibers. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a0/
[1] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl
[2] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov devyatimernogo prostranstva”, Tr. seminara po vektornomu i tenzornomu analizu, 18, Izd-vo MGU, M., 1978, 197–233 | MR
[3] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–304 | MR | Zbl
[4] Nurmiev A. G., “Orbity i invarianty kubicheskikh matrits tretego poryadka”, Matem. sb., 191:5 (2000), 101–108 | MR | Zbl
[5] Springer T., Teoriya invariantov, Mir, M., 1981 | Zbl