Estimates of Oscillations of the Hardy Transform
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 383-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Hardy transform of a nonincreasing function we obtain a sharp two-sided estimate of the $\operatorname {BLO}$-norm and sharp inequalities between the $\operatorname {BMO}$- and the $\operatorname {BLO}$-norms of a nonincreasing function. A well-known lower bound for the $\operatorname {BMO}$-norm of the Hardy transform is improved on the basis of these inequalities.
@article{MZM_2002_72_3_a6,
     author = {A. A. Korenovskii},
     title = {Estimates of {Oscillations} of the {Hardy} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--395},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a6/}
}
TY  - JOUR
AU  - A. A. Korenovskii
TI  - Estimates of Oscillations of the Hardy Transform
JO  - Matematičeskie zametki
PY  - 2002
SP  - 383
EP  - 395
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a6/
LA  - ru
ID  - MZM_2002_72_3_a6
ER  - 
%0 Journal Article
%A A. A. Korenovskii
%T Estimates of Oscillations of the Hardy Transform
%J Matematičeskie zametki
%D 2002
%P 383-395
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a6/
%G ru
%F MZM_2002_72_3_a6
A. A. Korenovskii. Estimates of Oscillations of the Hardy Transform. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a6/

[1] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M.–L., 1948

[2] Lyons R., “A lower bound on the Cesàro operator”, Proc. Amer. Math. Soc., 86 (1982), 694–699 | DOI | MR

[3] Renaud P. R., “A reversed Hardy inequality”, Bull. Austral. Math. Soc., 34 (1986), 225–232 | DOI | MR | Zbl

[4] Milman M., “A note on reversed Hardy inequalities and Gehring's lemma”, Comm. Pure Appl. Math., 50 (1997), 311–315 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[6] Coifman R. R., Rochberg R., “Another characterization of $\operatorname{BMO}$”, Proc. Amer. Math. Soc., 79 (1980), 249–254 | DOI | MR | Zbl

[7] Siskakis A. G., “Composition semigroups and the Cesàro operator on $H^p$”, J. London Math. Soc., 36:2 (1987), 153–164 | DOI | MR | Zbl

[8] Siskakis A. G., “The Cesàro operator is bounded on $H^p$”, Proc. Amer. Math. Soc., 110 (1990), 461–462 | DOI | MR | Zbl

[9] Stempak K., “Cesàro averaging operators”, Proc. Royal Soc. Edinburgh, 124 (1994), 121–126 | MR | Zbl

[10] Dang Vu Giang, Moricz F., “The Cesàro operator is bounded on the Hardy space $H^1$”, Acta Sci. Math. (Szeged), 61 (1995), 535–544 | MR | Zbl

[11] Golubov B. I., “Ogranichennost operatorov Khardi i Khardi–Littlvuda v prostranstvakh $\operatorname{Re}H^1$ i $\operatorname{BMO}$”, Matem. sb., 188 (1997), 93–106 | MR | Zbl

[12] Jie Xiao, “A reverse $\operatorname{BMO}$-Hardy inequality”, Real Analysis Exchange, 25:2 (1999/2000), 673–678 | MR

[13] Klemes I., “A mean oscillation inequality”, Proc. Amer. Math. Soc., 93:3 (1985), 497–500 | DOI | MR | Zbl

[14] Bennett C., Sharpley R., Interpolation of Operators, Acad. Press, 1988