Approximation of Sobolev Classes by Their Finite-Dimensional Sections
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 370-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider relative widths characterizing the best approximation of a fixed set by its sections of given dimension. For Sobolev classes of periodic functions of a single variable with constraints in $L_\infty$ or $L_1$ on higher-order derivatives, we present the exact orders of such widths in the spaces $L_q$.
@article{MZM_2002_72_3_a5,
     author = {V. N. Konovalov},
     title = {Approximation of {Sobolev} {Classes} by {Their} {Finite-Dimensional} {Sections}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {370--382},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a5/}
}
TY  - JOUR
AU  - V. N. Konovalov
TI  - Approximation of Sobolev Classes by Their Finite-Dimensional Sections
JO  - Matematičeskie zametki
PY  - 2002
SP  - 370
EP  - 382
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a5/
LA  - ru
ID  - MZM_2002_72_3_a5
ER  - 
%0 Journal Article
%A V. N. Konovalov
%T Approximation of Sobolev Classes by Their Finite-Dimensional Sections
%J Matematičeskie zametki
%D 2002
%P 370-382
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a5/
%G ru
%F MZM_2002_72_3_a5
V. N. Konovalov. Approximation of Sobolev Classes by Their Finite-Dimensional Sections. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 370-382. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a5/

[1] Kolmogoroff A. N., “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse”, Ann. Math., 37:1 (1936), 107–110 | DOI | MR | Zbl

[2] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976

[3] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[4] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985

[5] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987

[6] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI AN SSSR, M., 1987, 103–260 | MR

[7] Konovalov V. N., “Otsenki poperechnikov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 35:3 (1984), 369–380 | MR | Zbl

[8] Stechkin S. B., “O nailuchshem priblizhenii zadannykh klassov funktsii lyubymi polinomami”, UMN, 9:1 (1954), 133–134 | Zbl

[9] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[10] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80:2 (1969), 290–304 | MR | Zbl

[11] Tikhomirov V. M., “Some remarks on relative diameters”, Banach Center Publ., 22, 1989, 471–474 | MR | Zbl

[12] Babenko V. F., “Priblizheniya v srednem pri nalichii ogranichenii na proizvodnye priblizhayuschikh funktsii”, Voprosy analiza i priblizheniya, Sb. nauchn. tr., IM AN USSR, Kiev, 1989, 9–18 | MR

[13] Babenko V. F., “On the relative widths of classes of functions with bounded mixed derivative”, East J. Approximation, 2:3 (1996), 319–330 | MR | Zbl

[14] Babenko V. F., “O nailuchshikh ravnomernykh priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Matem. zametki, 50:6 (1991), 24–30 | MR | Zbl

[15] Babenko V. F., “O nailuchshikh $L_1$-priblizheniyakh splainami pri nalichii ogranichenii na ikh proizvodnye”, Matem. zametki, 51:5 (1992), 12–19 | MR | Zbl

[16] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, ZhVMiMF, 33 (1993), 996–1003 | MR | Zbl

[17] Subbotin Yu. N., Telyakovskii S. A., “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Matem. zametki, 65:6 (1999), 871–879 | MR | Zbl

[18] Subbotin Yu. N., Telyakovskii S. A., “Otnositelnye poperechniki klassov differentsiruemykh funktsii v metrike $L^2$”, UMN, 56:4 (2001), 159–160 | MR | Zbl

[19] Azar L. E., Approksimatsiya funktsionalnykh klassov pri nalichii ogranichenii, Diss. ... k. f.-m. n., DGU, Dnepropetrovsk, 1999

[20] Ismagilov R. S., “Ob $n$-mernykh poperechnikakh kompaktov v gilbertovom prostranstve”, Funktsion. analiz i ego prilozh., 2:2 (1968), 32–39 | MR | Zbl

[21] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl