Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_3_a4, author = {V. A. Koval'}, title = {The {Law} of the {Iterated} {Logarithm} for {Matrix-Normed} {Sums} of {Independent} {Random} {Variables} and {Its} {Applications}}, journal = {Matemati\v{c}eskie zametki}, pages = {363--369}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a4/} }
TY - JOUR AU - V. A. Koval' TI - The Law of the Iterated Logarithm for Matrix-Normed Sums of Independent Random Variables and Its Applications JO - Matematičeskie zametki PY - 2002 SP - 363 EP - 369 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a4/ LA - ru ID - MZM_2002_72_3_a4 ER -
V. A. Koval'. The Law of the Iterated Logarithm for Matrix-Normed Sums of Independent Random Variables and Its Applications. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 363-369. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a4/
[1] Buldygin V., Solntsev S., Asymptotic Behaviour of Linearly Transformed Sums of Random Variables, Kluwer, Dordrecht, 1997 | Zbl
[2] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer, Berlin, 1991 | Zbl
[3] Rotar V. I., “Neravnomernaya otsenka skorosti skhodimosti v mnogomernoi tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 15:4 (1970), 647–665 | MR | Zbl
[4] Lankaster P., Teoriya matrits, Nauka, M., 1978
[5] Wittmann R., “A general law of iterated logarithm”, Z. Wahrscheinlichkeit. Verw. Gebiete, 68:4 (1985), 521–543 | DOI | MR | Zbl
[6] Chen X., “On the law of the iterated logarithm for independent Banach space-valued random variables”, Ann. Probab., 21:4 (1993), 1991–2011 | DOI | MR | Zbl
[7] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | Zbl
[8] Koval V. O., “Pro zakon povtornogo logarifma dlya gaussovikh poslidovnostei ta iogo zastosuvannya”, Teor. imovirnost. matem. statist., 1996, no. 54, 66–71 | MR | Zbl
[9] Lai T. L., “Some almost sure convergence properties of weighted sums of martingale difference sequences”, Almost Everywhere Convergence, II (Evanston, IL, 1989), Acad. Press, Boston, 1991, 179–190
[10] Lai T. L., Wei C. Z., “A law of the iterated logarithm for double arrays of independent random variables with applications to regression and time series models”, Ann. Probab., 10:2 (1982), 320–335 | DOI | MR | Zbl