On a Remarkable Property of a Matrix of Mark Kac
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 356-362
Cet article a éte moissonné depuis la source Math-Net.Ru
A triangular submatrix extracted in a special way from the Mark Kac matrix has a remarkable spectral property: if the order of its columns is reversed, then half of the eigenvalues do not change, whereas the other half are multiplied by -1. This fact discovered by this author somewhat earlier has had no explanation until now. Such an explanation is given in this paper.
@article{MZM_2002_72_3_a3,
author = {Kh. D. Ikramov},
title = {On a {Remarkable} {Property} of a {Matrix} of {Mark} {Kac}},
journal = {Matemati\v{c}eskie zametki},
pages = {356--362},
year = {2002},
volume = {72},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a3/}
}
Kh. D. Ikramov. On a Remarkable Property of a Matrix of Mark Kac. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 356-362. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a3/
[1] Taussky O., Todd J., “Another look at a matrix of Mark Kac”, Linear Algebra Appl., 150 (1991), 341–360 | DOI | MR | Zbl
[2] Ikramov Kh. D., “O matritsakh, spektr kotorykh predskazuemym obrazom reagiruet na perestanovki stolbtsov”, Dokl. RAN, 364:3 (1999), 310–312 | MR | Zbl
[3] Taussky O., Zassenhaus H., “On the similarity transformation between a matrix and its transpose”, Pacific J. Math., 9:3 (1959), 893–896 | MR | Zbl
[4] Ikramov Kh. D., “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69 | MR