Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 448-454

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a normal semifinite weight $\varphi $ on a von Neumann algebra $\mathscr M$ satisfies the inequality $\varphi (|a_1+a_2|)\le \varphi (|a_1|)+\varphi (|a_2|)$ for any selfadjoint operators $a_1,a_2$ in $\mathscr M$ , then this weight is a trace. Several similar characterizations of traces among the normal semifinite weights are proved. In particular, Gardner's result on the characterization of traces by the inequality $|\varphi (a)|\le \varphi (|a|)$ is refined and reinforced.
@article{MZM_2002_72_3_a11,
     author = {A. I. Stolyarov and O. E. Tikhonov and A. N. Sherstnev},
     title = {Characterization of {Normal} {Traces} on {Von} {Neumann} {Algebras} by {Inequalities} for the {Modulus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--454},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a11/}
}
TY  - JOUR
AU  - A. I. Stolyarov
AU  - O. E. Tikhonov
AU  - A. N. Sherstnev
TI  - Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus
JO  - Matematičeskie zametki
PY  - 2002
SP  - 448
EP  - 454
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a11/
LA  - ru
ID  - MZM_2002_72_3_a11
ER  - 
%0 Journal Article
%A A. I. Stolyarov
%A O. E. Tikhonov
%A A. N. Sherstnev
%T Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus
%J Matematičeskie zametki
%D 2002
%P 448-454
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a11/
%G ru
%F MZM_2002_72_3_a11
A. I. Stolyarov; O. E. Tikhonov; A. N. Sherstnev. Characterization of Normal Traces on Von Neumann Algebras by Inequalities for the Modulus. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 448-454. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a11/