Some Properties of Periodic Words
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 330-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that the cube of a simple word cannot be decomposed into the product of words with periods of smaller length. In addition, the decomposition of a simple word's square into the product of words with shorter periods is studied. The interest in this sort of statements stems from the investigation of groups and semigroups specified by periodic defining relations.
@article{MZM_2002_72_3_a1,
     author = {V. S. Guba},
     title = {Some {Properties} of {Periodic} {Words}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {330--337},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a1/}
}
TY  - JOUR
AU  - V. S. Guba
TI  - Some Properties of Periodic Words
JO  - Matematičeskie zametki
PY  - 2002
SP  - 330
EP  - 337
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a1/
LA  - ru
ID  - MZM_2002_72_3_a1
ER  - 
%0 Journal Article
%A V. S. Guba
%T Some Properties of Periodic Words
%J Matematičeskie zametki
%D 2002
%P 330-337
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a1/
%G ru
%F MZM_2002_72_3_a1
V. S. Guba. Some Properties of Periodic Words. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 330-337. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a1/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | Zbl

[2] Guba V. S., “The word problem for the relatively free semigroup satisfying $T^m=T^{m+n}$ with $m\ge4$ or $m=3$, $n=1$”, Int. J. Algebra Comput., 3:2 (1993), 125–140 | DOI | MR | Zbl

[3] Guba V. S., “The word problem for the relatively free semigroup satisfying $T^m=T^{m+n}$ with $m\ge3$”, Int. J. Algebra Comput., 3:3 (1993), 335–347 | DOI | MR | Zbl

[4] Lyndon R. C., Schützenberger M. P., “The equation $a^M=b^Nc^P$ in a free group”, Michigan Math. J., 9 (1962), 289–298 | DOI | MR | Zbl

[5] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985

[6] Guba V. S., Some Properties of Periodic Words, Glasgow University Preprint Series. No. 93/09, Glasgow, 1993

[7] Guba V. S., “Nekotorye svoistva periodicheskikh slov”, III Mezhdunarodnaya konferentsiya po algebre, Tezisy soobschenii, Krasnoyarsk, 1993, 100