A Periodic Problem for the Landau--Ginzburg Equation
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 227-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a periodic problem for the n-dimensional complex Landau–Ginzburg equation. It is shown that in the case of small initial data there exists a unique classical solution of this problem, and an asymptotics of this solution uniform in the space variable is given. The leading term of the asymptotics is exponentially decreasing in time.
@article{MZM_2002_72_2_a6,
     author = {M. V. Komarov and I. A. Shishmarev},
     title = {A {Periodic} {Problem} for the {Landau--Ginzburg} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--235},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a6/}
}
TY  - JOUR
AU  - M. V. Komarov
AU  - I. A. Shishmarev
TI  - A Periodic Problem for the Landau--Ginzburg Equation
JO  - Matematičeskie zametki
PY  - 2002
SP  - 227
EP  - 235
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a6/
LA  - ru
ID  - MZM_2002_72_2_a6
ER  - 
%0 Journal Article
%A M. V. Komarov
%A I. A. Shishmarev
%T A Periodic Problem for the Landau--Ginzburg Equation
%J Matematičeskie zametki
%D 2002
%P 227-235
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a6/
%G ru
%F MZM_2002_72_2_a6
M. V. Komarov; I. A. Shishmarev. A Periodic Problem for the Landau--Ginzburg Equation. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 227-235. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a6/

[1] Ginzburg V. L., Landau L. D., “K teorii sverkhprovodimosti”, ZhETF, 20:12 (1950), 1064–1082

[2] Newell A. C., Whitehead J. A., “Finite bandwidth, finite amplitude convection”, J. Fluid Mech., 38:2 (1969), 279–303 | DOI | Zbl

[3] Kuramoto Y., Yamada T., “Turbulent state in chemical reactions”, Progress Theor. Phys., 56:2 (1976), 679–681 | DOI | MR

[4] Shishmarev I. A., Tsutsumi M., “Asimptotika pri bolshikh vremenakh reshenii kompleksnogo uravneniya Landau–Ginzburga”, Matem. sb., 190:4 (1995), 95–114 | MR

[5] Zhizhiashvili L. V., O sopryazhennykh funktsiyakh i trigonometricheskikh ryadakh, Diss. ... k. f.-m. n., MGU, M., 1967

[6] Naumkin P. I., Shishmarev I. A., Nonlinear Nonlocal Equations in the Theory of Waves, Amer. Math. Soc., Providence (R.I.), 1994 | Zbl