Functional Inequalities and Relative Capacities
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 216-226

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study functional inequalities of the form $$ \|f;Q\| \le C\varphi (\|\nabla f;P\|,\|f;R\|), $$ where $P$, $Q$, and $R$ are Banach ideal spaces of functions on a domain $\Omega \subset \mathbb R^n$, the constant $C$ is the same for all compactly supported functions $f$ satisfying the Lipschitz condition, $\nabla f$ is the gradient of $f$, and $\varphi $ is a continuous degree one homogeneous function. We give compatibility conditions for norms on the spaces $P$, $Q$, and $R$ that ensure the equivalence of the inequality in question to an isoperimetric inequality between the norms of indicators and relative capacities of compact subsets of the domain $\Omega $.
@article{MZM_2002_72_2_a5,
     author = {V. S. Klimov and E. S. Panasenko},
     title = {Functional {Inequalities} and {Relative} {Capacities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a5/}
}
TY  - JOUR
AU  - V. S. Klimov
AU  - E. S. Panasenko
TI  - Functional Inequalities and Relative Capacities
JO  - Matematičeskie zametki
PY  - 2002
SP  - 216
EP  - 226
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a5/
LA  - ru
ID  - MZM_2002_72_2_a5
ER  - 
%0 Journal Article
%A V. S. Klimov
%A E. S. Panasenko
%T Functional Inequalities and Relative Capacities
%J Matematičeskie zametki
%D 2002
%P 216-226
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a5/
%G ru
%F MZM_2002_72_2_a5
V. S. Klimov; E. S. Panasenko. Functional Inequalities and Relative Capacities. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 216-226. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a5/