Berezin Symbols and Schatten--von Neumann Classes
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 207-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of Berezin symbols, we give several criteria for operators to belong to the Schatten–von Neumann classes $\mathfrak S_p$. In particular, for functions of model operators, we give a complete answer to a question posed by Nordgren and Rosenthal.
@article{MZM_2002_72_2_a4,
     author = {M. T. Karaev},
     title = {Berezin {Symbols} and {Schatten--von} {Neumann} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--215},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/}
}
TY  - JOUR
AU  - M. T. Karaev
TI  - Berezin Symbols and Schatten--von Neumann Classes
JO  - Matematičeskie zametki
PY  - 2002
SP  - 207
EP  - 215
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/
LA  - ru
ID  - MZM_2002_72_2_a4
ER  - 
%0 Journal Article
%A M. T. Karaev
%T Berezin Symbols and Schatten--von Neumann Classes
%J Matematičeskie zametki
%D 2002
%P 207-215
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/
%G ru
%F MZM_2002_72_2_a4
M. T. Karaev. Berezin Symbols and Schatten--von Neumann Classes. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 207-215. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/

[1] Aronzajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR

[2] Halmos P. R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1982 | Zbl

[3] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 1134–1167 | MR | Zbl

[4] Berezin F. A., “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38:5 (1974), 1116–1175 | MR | Zbl

[5] Korenblum B., Zhu K., “An application of Tauberian theorems to Toeplitz operators”, J. Operator Theory, 33 (1995), 353–361 | MR | Zbl

[6] Stroethoff K., “Compact Hankel operators on the Bergman spaces on the unit ball and polydisk in $\mathbb C^n$”, J. Operator Theory, 32:1 (1990), 153–170 | MR

[7] Stroethoff K., “Compact Toeplitz operators on weighted harmonic Bergman spaces”, J. Austral. Math. Soc. Ser. A, 64 (1998), 136–148 | DOI | MR | Zbl

[8] Nordgren E., Rosenthal P., “Boundary values of Berezin symbols”, Operator Theory Advances Appl., 73, 1994, 362–368 | MR | Zbl

[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[10] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970

[11] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[12] Englis M., “Toeplitz operators and the Berezin transform on $H^2$”, Linear Algebra Appl., 223/224 (1995), 171–204 | DOI | MR | Zbl

[13] Peller V. V., “Gladkie operatory Gankelya i ikh prilozheniya (idealy $\frak S_p$, klassy Besova, sluchainye protsessy)”, Dokl. AN SSSR, 252:1 (1980), 43–48 | MR | Zbl

[14] Peller V. V., “Operatory Gankelya klassa $\frak S_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113:4 (1980), 538–581 | MR | Zbl

[15] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, UMN, 37:1 (1982), 53–124 | MR | Zbl

[16] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965