Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_2_a4, author = {M. T. Karaev}, title = {Berezin {Symbols} and {Schatten--von} {Neumann} {Classes}}, journal = {Matemati\v{c}eskie zametki}, pages = {207--215}, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/} }
M. T. Karaev. Berezin Symbols and Schatten--von Neumann Classes. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 207-215. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a4/
[1] Aronzajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR
[2] Halmos P. R., A Hilbert Space Problem Book, Springer-Verlag, New York, 1982 | Zbl
[3] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 1134–1167 | MR | Zbl
[4] Berezin F. A., “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38:5 (1974), 1116–1175 | MR | Zbl
[5] Korenblum B., Zhu K., “An application of Tauberian theorems to Toeplitz operators”, J. Operator Theory, 33 (1995), 353–361 | MR | Zbl
[6] Stroethoff K., “Compact Hankel operators on the Bergman spaces on the unit ball and polydisk in $\mathbb C^n$”, J. Operator Theory, 32:1 (1990), 153–170 | MR
[7] Stroethoff K., “Compact Toeplitz operators on weighted harmonic Bergman spaces”, J. Austral. Math. Soc. Ser. A, 64 (1998), 136–148 | DOI | MR | Zbl
[8] Nordgren E., Rosenthal P., “Boundary values of Berezin symbols”, Operator Theory Advances Appl., 73, 1994, 362–368 | MR | Zbl
[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[10] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970
[11] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[12] Englis M., “Toeplitz operators and the Berezin transform on $H^2$”, Linear Algebra Appl., 223/224 (1995), 171–204 | DOI | MR | Zbl
[13] Peller V. V., “Gladkie operatory Gankelya i ikh prilozheniya (idealy $\frak S_p$, klassy Besova, sluchainye protsessy)”, Dokl. AN SSSR, 252:1 (1980), 43–48 | MR | Zbl
[14] Peller V. V., “Operatory Gankelya klassa $\frak S_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113:4 (1980), 538–581 | MR | Zbl
[15] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, UMN, 37:1 (1982), 53–124 | MR | Zbl
[16] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965