Morrey Regularity of Nonlinear Elliptic Systems of High Order under Degeneration of Ellipticity
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 198-206
Voir la notice de l'article provenant de la source Math-Net.Ru
We study nonlinear elliptic systems of the form $\operatorname {div}^tA(x,D^su)=0$, $s+t$ even, $x\in \Omega \subset \mathbb R^n$, with the natural energy space $H^s$. We establish that for $s>t$ solutions from $H^s$ belong to the Morrey space and the Morrey exponent does not tend to zero under the degeneration of ellipticity. In the case $s=t$, a similar result is obtained under an additional structure condition on the system.
@article{MZM_2002_72_2_a3,
author = {E. A. Kalita},
title = {Morrey {Regularity} of {Nonlinear} {Elliptic} {Systems} of {High} {Order} under {Degeneration} of {Ellipticity}},
journal = {Matemati\v{c}eskie zametki},
pages = {198--206},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a3/}
}
TY - JOUR AU - E. A. Kalita TI - Morrey Regularity of Nonlinear Elliptic Systems of High Order under Degeneration of Ellipticity JO - Matematičeskie zametki PY - 2002 SP - 198 EP - 206 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a3/ LA - ru ID - MZM_2002_72_2_a3 ER -
E. A. Kalita. Morrey Regularity of Nonlinear Elliptic Systems of High Order under Degeneration of Ellipticity. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 198-206. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a3/