Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_2_a14, author = {I. Yu. Domanov}, title = {On the {Spectral} {Multiplicity} of {Some} {Volterra} {Operators} in {Sobolev} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {306--311}, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a14/} }
I. Yu. Domanov. On the Spectral Multiplicity of Some Volterra Operators in Sobolev Spaces. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 306-311. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a14/
[1] Wonham M. W., Linear Multivariable Control, Springer-Verlag, Berlin, 1974
[2] Nikolskii N. K., Vasjunin V. I., J. Operator Theory, 10 (1981), 307–330
[3] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967
[4] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[5] Tsekanovskii E. R., UMN, 20:6 (1965), 169–172 | MR
[6] Domanov I. Yu., Malamud M. M., “Invariant and hyperinvariant subspaces of an operator $J^\alpha$ and related operator algebras in Sobolev spaces”, Linear Algebra and Appl. (to appear)
[7] Malamud M. M., Operator Theory Advances Appl. Integral and Differential Operators, 102, 1998, 143–167 | MR | Zbl
[8] Domanov I. Yu., Methods of Functional Analysis and Topology, 1:5 (1999), 1–12 | MR | Zbl