On the Similarity of Some Differential Operators to Self-Adjoint Ones
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 292-302
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the similarity to self-adjoint operators of operators of the form $L=-\frac {\operatorname {sign}x}{|x|^\alpha p(x)}\,\frac {d^2}{dx^2}$, $\alpha >-1$, in the space $L_2(\mathbb R)$ with weight $|x|^\alpha p(x)$. As is well known, the answer to this problem in the case $p(x)\equiv 1$ is positive; it was obtained by using delicate methods of the theory of Hilbert spaces with indefinite metric. The use of a general similarity criterion in combination with methods of perturbation theory for differential operators allows us to generalize this result to a much wider class of weight functions $p(x)$.
@article{MZM_2002_72_2_a12,
author = {M. M. Faddeev and R. G. Shterenberg},
title = {On the {Similarity} of {Some} {Differential} {Operators} to {Self-Adjoint} {Ones}},
journal = {Matemati\v{c}eskie zametki},
pages = {292--302},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a12/}
}
TY - JOUR AU - M. M. Faddeev AU - R. G. Shterenberg TI - On the Similarity of Some Differential Operators to Self-Adjoint Ones JO - Matematičeskie zametki PY - 2002 SP - 292 EP - 302 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a12/ LA - ru ID - MZM_2002_72_2_a12 ER -
M. M. Faddeev; R. G. Shterenberg. On the Similarity of Some Differential Operators to Self-Adjoint Ones. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 292-302. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a12/