Critical $\Omega$-Fiber Formations of Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak H$ be a class of finite groups. An $\Omega$-fiber formation $\mathfrak F$ of finite groups with direction $\varphi $ is said to be a minimal $\Omega$-fiber non-$\mathfrak H$-formation with direction $\varphi $, or briefly an $\mathfrak H_\Omega $-critical formation, if $\mathfrak F\nsubseteq \mathfrak H$, but any proper $\Omega$-fiber subformation with direction $\varphi $ in $\mathfrak F$ belongs to the class $\mathfrak H$. In the paper, a complete description of the structure of minimal $\Omega$-fiber non-$\mathfrak H$-formations of finite groups of two different directions is given.
@article{MZM_2002_72_2_a10,
     author = {M. M. Sorokina and N. V. Silenok},
     title = {Critical $\Omega${-Fiber} {Formations} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--282},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - N. V. Silenok
TI  - Critical $\Omega$-Fiber Formations of Finite Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 269
EP  - 282
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/
LA  - ru
ID  - MZM_2002_72_2_a10
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A N. V. Silenok
%T Critical $\Omega$-Fiber Formations of Finite Groups
%J Matematičeskie zametki
%D 2002
%P 269-282
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/
%G ru
%F MZM_2002_72_2_a10
M. M. Sorokina; N. V. Silenok. Critical $\Omega$-Fiber Formations of Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/