Critical $\Omega$-Fiber Formations of Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak H$ be a class of finite groups. An $\Omega$-fiber formation $\mathfrak F$ of finite groups with direction $\varphi $ is said to be a minimal $\Omega$-fiber non-$\mathfrak H$-formation with direction $\varphi $, or briefly an $\mathfrak H_\Omega $-critical formation, if $\mathfrak F\nsubseteq \mathfrak H$, but any proper $\Omega$-fiber subformation with direction $\varphi $ in $\mathfrak F$ belongs to the class $\mathfrak H$. In the paper, a complete description of the structure of minimal $\Omega$-fiber non-$\mathfrak H$-formations of finite groups of two different directions is given.
@article{MZM_2002_72_2_a10,
     author = {M. M. Sorokina and N. V. Silenok},
     title = {Critical $\Omega${-Fiber} {Formations} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--282},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - N. V. Silenok
TI  - Critical $\Omega$-Fiber Formations of Finite Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 269
EP  - 282
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/
LA  - ru
ID  - MZM_2002_72_2_a10
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A N. V. Silenok
%T Critical $\Omega$-Fiber Formations of Finite Groups
%J Matematičeskie zametki
%D 2002
%P 269-282
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/
%G ru
%F MZM_2002_72_2_a10
M. M. Sorokina; N. V. Silenok. Critical $\Omega$-Fiber Formations of Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/

[1] Shemetkov L. A., “Ekrany stupenchatykh formatsii”, Tr. VI Vsesoyuznogo simpoziuma po teorii grupp, Naukova dumka, Kiev, 1980, 37–50 | MR

[2] Skiba A. N., “O kriticheskikh formatsiyakh”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, IM AN Ukrainy, Kiev, 1993, 250–268 | MR | Zbl

[3] Vedernikov V. A., Sorokina M. M., Kompozitsionnye i lokalnye nasledstvennye kriticheskie formatsii, Dep. VINITI 08.01.98 No 25-V98, Red. Sib. matem. zh., Novosibirsk, 1998, s. 1–19

[4] Sorokina M. M., “O kompozitsionnykh i lokalnykh kriticheskikh formatsiyakh”, Izv. vuzov. Matem., 2000, no. 7, 59–66 | MR | Zbl

[5] Skiba A. N., Shemetkov L. A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. tr., 2:2 (1999), 114–147 | MR | Zbl

[6] Vedernikov V. A., Koptyukh D. G., Chastichno kompozitsionnye formatsii grupp, Preprint No 2, BGPU, Bryansk, 1999, s. 1–28

[7] Selkin V. M., Skiba A. N., “O $\frak H_\Theta\omega$-kriticheskikh formatsiyakh”, Voprosy algebry, no. 14, Izd-vo Gomelskogo un-ta, Gomel, 1999, 127–131

[8] Vedernikov V. A., Sorokina M. M., $\omega$-veernye formatsii i klassy Fittinga konechnykh grupp, Preprint No 6, BGPU, Bryansk, 1999, s. 1–22

[9] Vedernikov V. A., Sorokina M. M., $\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp, Preprint No 5, BGPU, Bryansk, 1999, s. 1–25

[10] Vedernikov V. A., Maksimalnye sputniki $\Omega$-rassloennykh formatsii i klassov Fittinga, Preprint No 1, MGPU, M., 2001, s. 1–30

[11] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | Zbl

[12] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989

[13] Skiba A. N., Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | Zbl

[14] Vedernikov V. A., Elementy teorii klassov grupp, SGPI, Smolensk, 1988

[15] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992

[16] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969