Critical $\Omega$-Fiber Formations of Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak H$ be a class of finite groups. An $\Omega$-fiber formation $\mathfrak F$ of finite groups with direction $\varphi $ is said to be a minimal $\Omega$-fiber non-$\mathfrak H$-formation with direction $\varphi $, or briefly an $\mathfrak H_\Omega $-critical formation, if $\mathfrak F\nsubseteq \mathfrak H$, but any proper $\Omega$-fiber subformation with direction $\varphi $ in $\mathfrak F$ belongs to the class $\mathfrak H$. In the paper, a complete description of the structure of minimal $\Omega$-fiber non-$\mathfrak H$-formations of finite groups of two different directions is given.
@article{MZM_2002_72_2_a10,
author = {M. M. Sorokina and N. V. Silenok},
title = {Critical $\Omega${-Fiber} {Formations} of {Finite} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {269--282},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/}
}
M. M. Sorokina; N. V. Silenok. Critical $\Omega$-Fiber Formations of Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 269-282. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a10/