On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 171-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study trigonometric sums in finite fields $F_Q$. The Weil estimate of such sums is well known: $|S(f)|\le (\deg f-1)\sqrt Q$, where $f $is a polynomial with coefficients from $F(Q)$. We construct two classes of polynomials $f$, $(Q,2)=2$, for which $|S(f)|$ attains the largest possible value and, in particular, $|S(f)|=(\deg f-1)\sqrt Q$.
@article{MZM_2002_72_2_a1,
     author = {L. A. Bassalygo and V. A. Zinov'ev},
     title = {On {Polynomials} over a {Finite} {Field} of {Even} {Characteristic} with {Maximum} {Absolute} {Value} of the {Trigonometric} {Sum}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--177},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/}
}
TY  - JOUR
AU  - L. A. Bassalygo
AU  - V. A. Zinov'ev
TI  - On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum
JO  - Matematičeskie zametki
PY  - 2002
SP  - 171
EP  - 177
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/
LA  - ru
ID  - MZM_2002_72_2_a1
ER  - 
%0 Journal Article
%A L. A. Bassalygo
%A V. A. Zinov'ev
%T On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum
%J Matematičeskie zametki
%D 2002
%P 171-177
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/
%G ru
%F MZM_2002_72_2_a1
L. A. Bassalygo; V. A. Zinov'ev. On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/

[1] Bassalygo L. A., Zinovev V. A., “Mnogochleny spetsialnogo vida nad konechnym polem s maksimalnym modulem trigonometricheskoi summy”, UMN, 52:2 (1997), 31–44 | MR | Zbl

[2] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | Zbl

[3] Moreno O., Moreno C. J., “The MacWilliams–Sloane conjecture on the tightness of the Carlitz–Uchiyama bound and the weights of duals of BCH codes”, IEEE Trans. Information Theory, 40:6 (1994), 1894–1907 | DOI | MR | Zbl