On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 171-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We study trigonometric sums in finite fields $F_Q$. The Weil estimate of such sums is well known: $|S(f)|\le (\deg f-1)\sqrt Q$, where $f $is a polynomial with coefficients from $F(Q)$. We construct two classes of polynomials $f$, $(Q,2)=2$, for which $|S(f)|$ attains the largest possible value and, in particular, $|S(f)|=(\deg f-1)\sqrt Q$.
@article{MZM_2002_72_2_a1,
author = {L. A. Bassalygo and V. A. Zinov'ev},
title = {On {Polynomials} over a {Finite} {Field} of {Even} {Characteristic} with {Maximum} {Absolute} {Value} of the {Trigonometric} {Sum}},
journal = {Matemati\v{c}eskie zametki},
pages = {171--177},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/}
}
TY - JOUR AU - L. A. Bassalygo AU - V. A. Zinov'ev TI - On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum JO - Matematičeskie zametki PY - 2002 SP - 171 EP - 177 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/ LA - ru ID - MZM_2002_72_2_a1 ER -
%0 Journal Article %A L. A. Bassalygo %A V. A. Zinov'ev %T On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum %J Matematičeskie zametki %D 2002 %P 171-177 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/ %G ru %F MZM_2002_72_2_a1
L. A. Bassalygo; V. A. Zinov'ev. On Polynomials over a Finite Field of Even Characteristic with Maximum Absolute Value of the Trigonometric Sum. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 171-177. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a1/