Layer-Projective Lattices. II
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 163-170

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is: any primary Arguesian lattice over the field $GF(p)$ of geometric dimension at least three is isomorphic to the lattice of all submodules of a finitely generated module over the ring of polynomials of bounded degree over the field $GF(p)$.
@article{MZM_2002_72_2_a0,
     author = {V. A. Antonov and Yu. A. Nazyrova},
     title = {Layer-Projective {Lattices.} {II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - Yu. A. Nazyrova
TI  - Layer-Projective Lattices. II
JO  - Matematičeskie zametki
PY  - 2002
SP  - 163
EP  - 170
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/
LA  - ru
ID  - MZM_2002_72_2_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%A Yu. A. Nazyrova
%T Layer-Projective Lattices. II
%J Matematičeskie zametki
%D 2002
%P 163-170
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/
%G ru
%F MZM_2002_72_2_a0
V. A. Antonov; Yu. A. Nazyrova. Layer-Projective Lattices. II. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/