Layer-Projective Lattices. II
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is: any primary Arguesian lattice over the field $GF(p)$ of geometric dimension at least three is isomorphic to the lattice of all submodules of a finitely generated module over the ring of polynomials of bounded degree over the field $GF(p)$.
@article{MZM_2002_72_2_a0,
     author = {V. A. Antonov and Yu. A. Nazyrova},
     title = {Layer-Projective {Lattices.} {II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - Yu. A. Nazyrova
TI  - Layer-Projective Lattices. II
JO  - Matematičeskie zametki
PY  - 2002
SP  - 163
EP  - 170
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/
LA  - ru
ID  - MZM_2002_72_2_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%A Yu. A. Nazyrova
%T Layer-Projective Lattices. II
%J Matematičeskie zametki
%D 2002
%P 163-170
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/
%G ru
%F MZM_2002_72_2_a0
V. A. Antonov; Yu. A. Nazyrova. Layer-Projective Lattices. II. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a0/

[1] Sudzuki M., Stroenie gruppy i stroenie struktury ee podgrupp, IL, M., 1960

[2] Yakovlev B. V., “Ob usloviyakh, pri kotorykh reshetka izomorfna reshetke podgrupp gruppy”, Algebra i logika, 13:6 (1974), 694–712 | MR | Zbl

[3] Anischenko S. A., “O predstavlenii nekotorykh modulyarnykh struktur strukturami podgrupp”, Matem. zapiski Krasnoyarskogo gospedinstituta, 1965, no. 1, 1–21

[4] Antonov V. A., Nazyrova Yu. A., “Sloino proektivnye reshetki, 1”, Matem. zametki, 63:2 (1998), 170–182 | MR | Zbl

[5] Jonsson B., Monk G., “Representations of primary arguesian lattices”, Pacific J. Math., 30:1 (1969), 95–139 | MR | Zbl

[6] Monk G. S., “Desargues law and the representation of primary lattices”, Pacific J. Math., 30:1 (1969), 175–186 | MR | Zbl

[7] Antonov V. A., “Ob odnom klasse modulyarnykh reshetok konechnoi dliny”, Algebra i logika, 30:1 (1991), 3–14 | MR

[8] Jonsson B., “Modular lattices and Desargues theorem”, Math. Scand., 2 (1953), 205–314