Gibbs Measures and Markov Random Fields with Association $I$
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 94-101
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notions of a Gibbs measure with the corresponding potential with association $I$ (where $I$ is a subset of the set $\{1,2,\dots ,k\}$) of a Markov random field with memory $I$ and measure with association $I$. It is proved that these three notions are equivalent.
@article{MZM_2002_72_1_a8,
author = {A. M. Rakhmatullaev and U. A. Rozikov},
title = {Gibbs {Measures} and {Markov} {Random} {Fields} with {Association} $I$},
journal = {Matemati\v{c}eskie zametki},
pages = {94--101},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/}
}
A. M. Rakhmatullaev; U. A. Rozikov. Gibbs Measures and Markov Random Fields with Association $I$. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/