Gibbs Measures and Markov Random Fields with Association $I$
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 94-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of a Gibbs measure with the corresponding potential with association $I$ (where $I$ is a subset of the set $\{1,2,\dots ,k\}$) of a Markov random field with memory $I$ and measure with association $I$. It is proved that these three notions are equivalent.
@article{MZM_2002_72_1_a8,
     author = {A. M. Rakhmatullaev and U. A. Rozikov},
     title = {Gibbs {Measures} and {Markov} {Random} {Fields} with {Association} $I$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {94--101},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/}
}
TY  - JOUR
AU  - A. M. Rakhmatullaev
AU  - U. A. Rozikov
TI  - Gibbs Measures and Markov Random Fields with Association $I$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 94
EP  - 101
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/
LA  - ru
ID  - MZM_2002_72_1_a8
ER  - 
%0 Journal Article
%A A. M. Rakhmatullaev
%A U. A. Rozikov
%T Gibbs Measures and Markov Random Fields with Association $I$
%J Matematičeskie zametki
%D 2002
%P 94-101
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/
%G ru
%F MZM_2002_72_1_a8
A. M. Rakhmatullaev; U. A. Rozikov. Gibbs Measures and Markov Random Fields with Association $I$. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a8/