Elementary Classes of Groups
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a class of groups. The elementary class with base $B$ is defined as the minimal class of groups containing $B$ and closed with respect to taking subgroups, quotient groups, group extensions, and direct limits. Properties of such classes are studied. Some applications to the theory of elementary amenable groups and a relation to the Kurosh–Chernikov classes of generalized solvable groups are considered.
@article{MZM_2002_72_1_a7,
     author = {D. V. Osin},
     title = {Elementary {Classes} of {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a7/}
}
TY  - JOUR
AU  - D. V. Osin
TI  - Elementary Classes of Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 84
EP  - 93
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a7/
LA  - ru
ID  - MZM_2002_72_1_a7
ER  - 
%0 Journal Article
%A D. V. Osin
%T Elementary Classes of Groups
%J Matematičeskie zametki
%D 2002
%P 84-93
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a7/
%G ru
%F MZM_2002_72_1_a7
D. V. Osin. Elementary Classes of Groups. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 84-93. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a7/

[1] von Neumann J., “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116

[2] Day M. M., “Amenable semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl

[3] Chou Ch., “Elementary amenable groups”, Illinois J. Math., 24 (1980), 396–407 | MR | Zbl

[4] Chernikov S. N., Kurosh A. G., “Razreshimye i nilpotentnye gruppy”, UMN, 2 (1947), 18–59 | MR

[5] Razmyslov Yu. P., Identities of Algebras and their Representations, Transl. Math. Monographs, 138, Amer. Math. Soc, Providence, R.I., 1994 | MR | Zbl

[6] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[7] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271 (1983), 30–33 | MR | Zbl

[8] Wolf J. A., “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”, J. Diff. Geom., 2 (1968), 421–446 | MR | Zbl

[9] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | Zbl

[10] Grigorchuk R. I., Wilson J., Rigidity Properties of Branch Groups, Preprint, University of Geneva, 2001

[11] Rosset S., “A property of groups of non-exponential growth”, Proc. Amer. Math. Soc., 54 (1976), 24–26 | DOI | MR | Zbl

[12] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. Math. IHES, 53, 1981, 53–73 | MR

[13] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969