The Plancherel--Rotach Formula for Chebyshev--Hermite Functions on Half-Intervals Contracting to Infinity
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 74-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the Plancherel–Rotach asymptotic formula for the Chebyshev–Hermite functions $(-1)^ne^{x^2/2}(e^{-x^2})^{(n)}/\sqrt {2^nn!\sqrt \pi}$ and their derivatives for the case in which $+\infty$ belongs to the domain of definition. A method for calculating the approximation accuracy is also given.
@article{MZM_2002_72_1_a6,
author = {R. S. Larionchikov},
title = {The {Plancherel--Rotach} {Formula} for {Chebyshev--Hermite} {Functions} on {Half-Intervals} {Contracting} to {Infinity}},
journal = {Matemati\v{c}eskie zametki},
pages = {74--83},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a6/}
}
TY - JOUR AU - R. S. Larionchikov TI - The Plancherel--Rotach Formula for Chebyshev--Hermite Functions on Half-Intervals Contracting to Infinity JO - Matematičeskie zametki PY - 2002 SP - 74 EP - 83 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a6/ LA - ru ID - MZM_2002_72_1_a6 ER -
R. S. Larionchikov. The Plancherel--Rotach Formula for Chebyshev--Hermite Functions on Half-Intervals Contracting to Infinity. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a6/