The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 48-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the solvability of the second mixed problem in a noncylindrical domain for the nonstationary equation $$ \operatorname {div}(k(x)\operatorname {grad}u_t)-c(x)u_t-b(x)u(x,t)=f(x,t), $$ called the pseudoparabolic equation. We prove existence and uniqueness theorems for the solution in the case of contracting (as time $t$ increases) domains.
@article{MZM_2002_72_1_a4,
     author = {M. V. Ivanova and V. I. Ushakov},
     title = {The {Second} {Boundary-Value} {Problem} for {Pseudoparabolic} {Equations} in {Noncylindrical} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--53},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/}
}
TY  - JOUR
AU  - M. V. Ivanova
AU  - V. I. Ushakov
TI  - The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains
JO  - Matematičeskie zametki
PY  - 2002
SP  - 48
EP  - 53
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/
LA  - ru
ID  - MZM_2002_72_1_a4
ER  - 
%0 Journal Article
%A M. V. Ivanova
%A V. I. Ushakov
%T The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains
%J Matematičeskie zametki
%D 2002
%P 48-53
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/
%G ru
%F MZM_2002_72_1_a4
M. V. Ivanova; V. I. Ushakov. The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 48-53. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/

[1] Sviridyuk G. A., “K obschei teorii polugrupp”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[2] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | MR | Zbl

[3] Ushakov V. I., “Stabilizatsiya reshenii tretei smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka v netsilindricheskoi oblasti”, Matem. sb., 111(153):1 (1980), 95–115 | MR | Zbl

[4] Ivanova M. V., “Vtoraya kraevaya zadacha dlya uravneniya tipa Soboleva v netsilindricheskoi oblasti”, Pontryaginskie chteniya–X, Tez. dokl., VGU, Voronezh, 1999, 114