The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 48-53
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the study of the solvability of the second mixed problem in a noncylindrical domain for the nonstationary equation $$ \operatorname {div}(k(x)\operatorname {grad}u_t)-c(x)u_t-b(x)u(x,t)=f(x,t), $$ called the pseudoparabolic equation. We prove existence and uniqueness theorems for the solution in the case of contracting (as time $t$ increases) domains.
@article{MZM_2002_72_1_a4,
author = {M. V. Ivanova and V. I. Ushakov},
title = {The {Second} {Boundary-Value} {Problem} for {Pseudoparabolic} {Equations} in {Noncylindrical} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {48--53},
year = {2002},
volume = {72},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/}
}
TY - JOUR AU - M. V. Ivanova AU - V. I. Ushakov TI - The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains JO - Matematičeskie zametki PY - 2002 SP - 48 EP - 53 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/ LA - ru ID - MZM_2002_72_1_a4 ER -
M. V. Ivanova; V. I. Ushakov. The Second Boundary-Value Problem for Pseudoparabolic Equations in Noncylindrical Domains. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 48-53. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a4/
[1] Sviridyuk G. A., “K obschei teorii polugrupp”, UMN, 49:4 (1994), 47–74 | MR | Zbl
[2] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | MR | Zbl
[3] Ushakov V. I., “Stabilizatsiya reshenii tretei smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka v netsilindricheskoi oblasti”, Matem. sb., 111(153):1 (1980), 95–115 | MR | Zbl
[4] Ivanova M. V., “Vtoraya kraevaya zadacha dlya uravneniya tipa Soboleva v netsilindricheskoi oblasti”, Pontryaginskie chteniya–X, Tez. dokl., VGU, Voronezh, 1999, 114