Quasistability of a Vector Trajectory Majority Optimization Problem
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 38-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multicriteria combinatorial problem with majority optimality principle whose particular criteria are of the form MINSUM, MINMAX, and MINMIN. We obtain a lower attainable bound for the radius of quasistability of such a problem in the case of the Chebyshev norm on the space of perturbing parameters of the vector criterion. We give sufficient conditions for the quasistability of the problem; these are also necessary in the case of linear special criteria.
@article{MZM_2002_72_1_a3,
author = {V. A. Emelichev and Yu. v. Stepanishina},
title = {Quasistability of a {Vector} {Trajectory} {Majority} {Optimization} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {38--47},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/}
}
TY - JOUR AU - V. A. Emelichev AU - Yu. v. Stepanishina TI - Quasistability of a Vector Trajectory Majority Optimization Problem JO - Matematičeskie zametki PY - 2002 SP - 38 EP - 47 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/ LA - ru ID - MZM_2002_72_1_a3 ER -
V. A. Emelichev; Yu. v. Stepanishina. Quasistability of a Vector Trajectory Majority Optimization Problem. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/