Quasistability of a Vector Trajectory Majority Optimization Problem
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 38-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria combinatorial problem with majority optimality principle whose particular criteria are of the form MINSUM, MINMAX, and MINMIN. We obtain a lower attainable bound for the radius of quasistability of such a problem in the case of the Chebyshev norm on the space of perturbing parameters of the vector criterion. We give sufficient conditions for the quasistability of the problem; these are also necessary in the case of linear special criteria.
@article{MZM_2002_72_1_a3,
     author = {V. A. Emelichev and Yu. v. Stepanishina},
     title = {Quasistability of a {Vector} {Trajectory} {Majority} {Optimization} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Yu. v. Stepanishina
TI  - Quasistability of a Vector Trajectory Majority Optimization Problem
JO  - Matematičeskie zametki
PY  - 2002
SP  - 38
EP  - 47
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/
LA  - ru
ID  - MZM_2002_72_1_a3
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Yu. v. Stepanishina
%T Quasistability of a Vector Trajectory Majority Optimization Problem
%J Matematičeskie zametki
%D 2002
%P 38-47
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/
%G ru
%F MZM_2002_72_1_a3
V. A. Emelichev; Yu. v. Stepanishina. Quasistability of a Vector Trajectory Majority Optimization Problem. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a3/