Structure of Quasi-Layer-Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130

Voir la notice de l'article provenant de la source Math-Net.Ru

A group is said to be layer-finite if it has at most finitely many elements of any given order. In this paper, the structure of infinite groups all of whose proper subgroups are layer-finite is investigated.
@article{MZM_2002_72_1_a10,
     author = {A. I. Sozutov and S. I. Shakhova},
     title = {Structure of {Quasi-Layer-Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--130},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - S. I. Shakhova
TI  - Structure of Quasi-Layer-Finite Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 118
EP  - 130
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/
LA  - ru
ID  - MZM_2002_72_1_a10
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A S. I. Shakhova
%T Structure of Quasi-Layer-Finite Groups
%J Matematičeskie zametki
%D 2002
%P 118-130
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/
%G ru
%F MZM_2002_72_1_a10
A. I. Sozutov; S. I. Shakhova. Structure of Quasi-Layer-Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/