Structure of Quasi-Layer-Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group is said to be layer-finite if it has at most finitely many elements of any given order. In this paper, the structure of infinite groups all of whose proper subgroups are layer-finite is investigated.
@article{MZM_2002_72_1_a10,
     author = {A. I. Sozutov and S. I. Shakhova},
     title = {Structure of {Quasi-Layer-Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--130},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - S. I. Shakhova
TI  - Structure of Quasi-Layer-Finite Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 118
EP  - 130
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/
LA  - ru
ID  - MZM_2002_72_1_a10
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A S. I. Shakhova
%T Structure of Quasi-Layer-Finite Groups
%J Matematičeskie zametki
%D 2002
%P 118-130
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/
%G ru
%F MZM_2002_72_1_a10
A. I. Sozutov; S. I. Shakhova. Structure of Quasi-Layer-Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/

[1] Chernikov S. N., “K teorii beskonechnykh $p$-grupp”, Dokl. AN SSSR, 50:1 (1945), 71–74 | MR | Zbl

[2] Chernikov S. N., “Beskonechnye sloino konechnye gruppy”, Matem. sb., 22(64):1 (1948), 101–133 | MR | Zbl

[3] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1980

[4] Gorchakov Yu. M., Gruppy s konechnymi klassami sopryazhennykh elementov, Nauka, M., 1978 | Zbl

[5] Senashov V. I., Sloino konechnye gruppy, VO Nauka, Novosibirsk, 1993 | Zbl

[6] Sozutov A. I., “O suschestvovanii v gruppe $f$-lokalnykh podgrupp”, Algebra i logika, 36:5 (1997), 573–598 | MR | Zbl

[7] Sozutov A. I., Shakhova S. I., “O kvazisloino konechnykh gruppakh”, Vest. Kras. arkhit.-stroit. akad., Sb. nauch. tr., no. 1, Krasnoyarsk, 1999, 77–83

[8] Sozutov A. I., Shakhova S. I., “O stroenii kvazisloino konechnykh grupp”, Vest. Kras. arkhit.-stroit. akad., Sb. nauch. tr., no. 1, Krasnoyarsk, 2000, 69–76

[9] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[10] Shunkov V. P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493 | MR | Zbl

[11] Shunkov V. P., “O dostatochnykh priznakakh suschestvovaniya v gruppe beskonechnykh lokalno konechnykh podgrupp”, Algebra i logika, 15:6 (1976), 716–737 | MR | Zbl

[12] Lossov K. I., “Dostatochnye usloviya vlozhimosti amalgamy v periodicheskuyu gruppu”, Tezisy soobschenii 19-i Vsesoyuznoi algebraicheskoi konferentsii, Ch. 1, Lvov, 1987, 163

[13] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, Izd-e 14-e, Novosibirsk, 1999

[14] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968

[15] Starostin A. I., “O gruppakh Frobeniusa”, Ukr. matem. zh., 23:5 (1971), 629–639 | MR | Zbl

[16] Sozutov A. I., Shunkov V. P., “Ob odnom obobschenii teoremy Frobeniusa na beskonechnye gruppy”, Matem. sb., 100:4 (1976), 495–506 | MR | Zbl

[17] Sozutov A. I., Shunkov V. P., “O beskonechnykh gruppakh, nasyschennykh frobeniusovymi podgruppami”, Algebra i logika, 16:6 (1977), 711–735 | MR | Zbl

[18] Sozutov A. I., “O nekotorykh priznakakh neprostoty grupp s involyutsiyami”, Algebra i logika (to appear)

[19] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | Zbl

[20] Kharari F., Teoriya grafov, Mir, M., 1973