Structure of Quasi-Layer-Finite Groups
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130
Voir la notice de l'article provenant de la source Math-Net.Ru
A group is said to be layer-finite if it has at most finitely many elements of any given order. In this paper, the structure of infinite groups all of whose proper subgroups are layer-finite is investigated.
@article{MZM_2002_72_1_a10,
author = {A. I. Sozutov and S. I. Shakhova},
title = {Structure of {Quasi-Layer-Finite} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {118--130},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/}
}
A. I. Sozutov; S. I. Shakhova. Structure of Quasi-Layer-Finite Groups. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 118-130. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a10/