Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider questions related to the structure of inverse matrices of linear bounded operators acting in infinite-dimensional complex Banach spaces. We obtain specific estimates of elements of inverse matrices for bounded operators whose matrices have a special structure. Matrices are introduced as special operator-valued functions on an index set. The matrix structure is described by the behavior of the given function on elements of a special partition of the index set. The method used for deriving the estimates is based on an analysis of Fourier series of strongly continuous periodic functions.
@article{MZM_2002_72_1_a0,
     author = {T. V. Azarnova},
     title = {Estimates for {Elements} of {Inverse} {Matrices} for a {Class} of {Operators} with {Matrices} of {Special} {Structure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/}
}
TY  - JOUR
AU  - T. V. Azarnova
TI  - Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure
JO  - Matematičeskie zametki
PY  - 2002
SP  - 3
EP  - 10
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/
LA  - ru
ID  - MZM_2002_72_1_a0
ER  - 
%0 Journal Article
%A T. V. Azarnova
%T Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure
%J Matematičeskie zametki
%D 2002
%P 3-10
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/
%G ru
%F MZM_2002_72_1_a0
T. V. Azarnova. Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/

[1] Blatov I. A., “Ob algebrakh operatorov s psevdorazrezhennymi matritsami i ikh prilozheniyakh”, Sib. matem. zh., 37:1 (1996), 36–59 | MR | Zbl

[2] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. matem., 61:6 (1997), 3–26 | MR | Zbl

[3] Demko S., Moss W. F., Smith P. W., “Decay rates for inverses of band matrices”, Math. Comp., 43:167 (1984), 491–499 | DOI | MR | Zbl

[4] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezhskogo un-ta, Voronezh, 1990 | Zbl

[5] Shubin M. A., “Psevdoraznostnye operatory i ikh funktsiya Grina”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 652–671 | MR | Zbl

[6] Azarnova T. V., “Otsenki elementov obratnykh matrits dlya nekotorykh klassov lineinykh ogranichennykh operatorov”, Izv. vuzov. Matem., 1998, no. 3, 74–77 | MR | Zbl

[7] Baskakov A. G., Asarnova T. V., Uskova N. B., “On the structure properties of some classes of infinite matrices”, Proceedings of the Tenth Crimean Autumn Mathematical School-Symposium “Spectral and Evolution Problems”, Simferopol, 2000

[8] Azarnova T. V., “Matrichnye metody otsenki yader obratnykh operatorov dlya nekotorykh klassov integralnykh operatorov”, Trudy III Mezhdunarodnoi konferentsii zhenschin-matematikov, T. 1, Voronezh, 1995, 4–9

[9] Azarnova T. V., Kolesnikov I. A., “Dostatochnoe uslovie obratimosti integralnykh operatorov s medlenno menyayuschimsya yadrom”, Vestnik fak-ta PMM, no. 2, Izd-vo Voronezhskogo un-ta, Voronezh, 2000, 3–12 | MR