Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider questions related to the structure of inverse matrices of linear bounded operators acting in infinite-dimensional complex Banach spaces. We obtain specific estimates of elements of inverse matrices for bounded operators whose matrices have a special structure. Matrices are introduced as special operator-valued functions on an index set. The matrix structure is described by the behavior of the given function on elements of a special partition of the index set. The method used for deriving the estimates is based on an analysis of Fourier series of strongly continuous periodic functions.
@article{MZM_2002_72_1_a0,
author = {T. V. Azarnova},
title = {Estimates for {Elements} of {Inverse} {Matrices} for a {Class} of {Operators} with {Matrices} of {Special} {Structure}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--10},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/}
}
TY - JOUR AU - T. V. Azarnova TI - Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure JO - Matematičeskie zametki PY - 2002 SP - 3 EP - 10 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/ LA - ru ID - MZM_2002_72_1_a0 ER -
T. V. Azarnova. Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a0/