Completeness of the Root Function System of a Nonlocal Problem in $L_p$
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 878-889

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the completeness of the root function system for nonlocal elliptic problems in the Sobolev spaces $W_p^l(Q)$.
@article{MZM_2002_71_6_a7,
     author = {V. V. Pod'yapol'skii},
     title = {Completeness of the {Root} {Function} {System} of a {Nonlocal} {Problem} in $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--889},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a7/}
}
TY  - JOUR
AU  - V. V. Pod'yapol'skii
TI  - Completeness of the Root Function System of a Nonlocal Problem in $L_p$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 878
EP  - 889
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a7/
LA  - ru
ID  - MZM_2002_71_6_a7
ER  - 
%0 Journal Article
%A V. V. Pod'yapol'skii
%T Completeness of the Root Function System of a Nonlocal Problem in $L_p$
%J Matematičeskie zametki
%D 2002
%P 878-889
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a7/
%G ru
%F MZM_2002_71_6_a7
V. V. Pod'yapol'skii. Completeness of the Root Function System of a Nonlocal Problem in $L_p$. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 878-889. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a7/