On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 867-877.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the convergence of solutions and eigenvalues of singularly perturbed boundary-value problems for the Laplace operator in three-dimensional bounded domains with thin tubes cut out and variation of boundary conditions on narrow strips.
@article{MZM_2002_71_6_a6,
     author = {M. Yu. Planida},
     title = {On the {Convergence} of {Solutions} of {Singularly} {Perturbed} {Boundary-Value} {Problems} for the {Laplace} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--877},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/}
}
TY  - JOUR
AU  - M. Yu. Planida
TI  - On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator
JO  - Matematičeskie zametki
PY  - 2002
SP  - 867
EP  - 877
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/
LA  - ru
ID  - MZM_2002_71_6_a6
ER  - 
%0 Journal Article
%A M. Yu. Planida
%T On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator
%J Matematičeskie zametki
%D 2002
%P 867-877
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/
%G ru
%F MZM_2002_71_6_a6
M. Yu. Planida. On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 867-877. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/

[1] Samarskii A. A., “O vliyanii zakrepleniya na sobstvennye chastoty zamknutykh ob'emov”, Dokl. AN SSSR, 63 (1948), 631–634 | MR | Zbl

[2] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103 (1977), 265–284 | MR | Zbl

[3] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Tr. seminara S. L. Soboleva, no. 1, Novosibirsk, 1980, 113–131 | MR

[4] Ozawa S., “Singular variation of domains and eigenvalues of the Laplacian”, Duke Math. J., 48 (1981), 767–778 | DOI | MR | Zbl

[5] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48 (1984), 347–371 | MR

[6] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Differents. uravneniya, 22 (1986), 640–652 | MR | Zbl

[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[8] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osrednenie v zadachakh teorii uprugosti, LGU, L., 1984

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1977 | Zbl