On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 867-877
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the convergence of solutions and eigenvalues of singularly perturbed boundary-value problems for the Laplace operator in three-dimensional bounded domains with thin tubes cut out and variation of boundary conditions on narrow strips.
@article{MZM_2002_71_6_a6,
author = {M. Yu. Planida},
title = {On the {Convergence} of {Solutions} of {Singularly} {Perturbed} {Boundary-Value} {Problems} for the {Laplace} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {867--877},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/}
}
TY - JOUR AU - M. Yu. Planida TI - On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator JO - Matematičeskie zametki PY - 2002 SP - 867 EP - 877 VL - 71 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/ LA - ru ID - MZM_2002_71_6_a6 ER -
M. Yu. Planida. On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 867-877. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a6/