Algebraic Relations between the Hypergeometric E-Function and Its Derivatives
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 832-844
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the generalized hypergeometric function
$$
\sum _{n=0}^\infty
\frac 1{(\lambda _1+1)_n\dotsb(\lambda _t+1)_n}
\biggl (\frac zt\biggr )^{tn},
\qquad\lambda _1,\dots,\lambda _t\in\mathbb Q\setminus\{-1,-2,\dots\},
$$
where $t$ is an even number, and its derivatives up to the order $t- 1$ inclusive. In the case of algebraic dependence between these functions over $\mathbb C(z)$, a complete structure of algebraic relations between them is given.
@article{MZM_2002_71_6_a3,
author = {V. Kh. Salikhov and G. G. Viskina},
title = {Algebraic {Relations} between the {Hypergeometric} {E-Function} and {Its} {Derivatives}},
journal = {Matemati\v{c}eskie zametki},
pages = {832--844},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a3/}
}
TY - JOUR AU - V. Kh. Salikhov AU - G. G. Viskina TI - Algebraic Relations between the Hypergeometric E-Function and Its Derivatives JO - Matematičeskie zametki PY - 2002 SP - 832 EP - 844 VL - 71 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a3/ LA - ru ID - MZM_2002_71_6_a3 ER -
V. Kh. Salikhov; G. G. Viskina. Algebraic Relations between the Hypergeometric E-Function and Its Derivatives. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 832-844. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a3/