A Discrete Analog of Euler's Summation Formula
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 931-936
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove a discrete analog of Euler's summation formula. The difference from the classical Euler formula is in that the derivatives are replaced by finite differences and the integrals by finite sums. Instead of Bernoulli numbers and Bernoulli polynomials, special numbers $P_n$ and special polynomials $P_n(x)$ introduced by Korobov in 1996 appear in the formula.
@article{MZM_2002_71_6_a12,
author = {A. V. Ustinov},
title = {A {Discrete} {Analog} of {Euler's} {Summation} {Formula}},
journal = {Matemati\v{c}eskie zametki},
pages = {931--936},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/}
}
A. V. Ustinov. A Discrete Analog of Euler's Summation Formula. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 931-936. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/