A Discrete Analog of Euler's Summation Formula
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 931-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a discrete analog of Euler's summation formula. The difference from the classical Euler formula is in that the derivatives are replaced by finite differences and the integrals by finite sums. Instead of Bernoulli numbers and Bernoulli polynomials, special numbers $P_n$ and special polynomials $P_n(x)$ introduced by Korobov in 1996 appear in the formula.
@article{MZM_2002_71_6_a12,
     author = {A. V. Ustinov},
     title = {A {Discrete} {Analog} of {Euler's} {Summation} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {931--936},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - A Discrete Analog of Euler's Summation Formula
JO  - Matematičeskie zametki
PY  - 2002
SP  - 931
EP  - 936
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/
LA  - ru
ID  - MZM_2002_71_6_a12
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T A Discrete Analog of Euler's Summation Formula
%J Matematičeskie zametki
%D 2002
%P 931-936
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/
%G ru
%F MZM_2002_71_6_a12
A. V. Ustinov. A Discrete Analog of Euler's Summation Formula. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 931-936. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a12/

[1] Korobov N. M., “Spetsialnye polinomy i ikh prilozheniya”, Diofantovy priblizheniya. Matem. zapiski, no. 2, MGU, M., 1996, 77–89 | MR

[2] Korobov N. M., Teoretikochislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[3] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967