Subnormal Structure of Two-Dimensional Linear Groups over Full Rings
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 924-930.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of the subnormal subgroups of two-dimensional linear groups over certain $(m,n)$-full rings is given. Examples of $(m,n)$-full rings are semilocal rings and rings of dimension zero, in particular, von Neumann regular rings, under the assumption that every residue field of these rings contains more than $m(n - 1)$ elements.
@article{MZM_2002_71_6_a11,
     author = {S. Tazhetdinov},
     title = {Subnormal {Structure} of {Two-Dimensional} {Linear} {Groups} over {Full} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {924--930},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a11/}
}
TY  - JOUR
AU  - S. Tazhetdinov
TI  - Subnormal Structure of Two-Dimensional Linear Groups over Full Rings
JO  - Matematičeskie zametki
PY  - 2002
SP  - 924
EP  - 930
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a11/
LA  - ru
ID  - MZM_2002_71_6_a11
ER  - 
%0 Journal Article
%A S. Tazhetdinov
%T Subnormal Structure of Two-Dimensional Linear Groups over Full Rings
%J Matematičeskie zametki
%D 2002
%P 924-930
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a11/
%G ru
%F MZM_2002_71_6_a11
S. Tazhetdinov. Subnormal Structure of Two-Dimensional Linear Groups over Full Rings. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 924-930. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a11/

[1] McDonald B. R., “$\operatorname{GL}_2$ of rings with many units”, Comm. Algebra, 8:9 (1980), 869–888 | DOI | MR | Zbl

[2] Tazhetdinov S., “Subnormalnoe stroenie dvumernykh lineinykh grupp nad $6$-primitivnymi koltsami”, Matem. zametki, 52:4 (1992), 99–105 | MR | Zbl

[3] Tazhetdinov S., “Subnormalnoe stroenie dvumernykh lineinykh grupp nad koltsami, blizkimi k polyam”, Algebra i logika, 24:4 (1985), 414–425 | MR | Zbl

[4] Wilson J. S., “The normal and subnormal structure of general linear groups”, Proc. Cambridge Phil. Soc., 71:2 (1972), 163–177 | DOI | MR | Zbl

[5] Vaserstein L. N., “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[6] Vavilov N. A., “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107 (1990), 193–196 | DOI | MR | Zbl

[7] Arrell D. G., “The subnormal subgroup structure of the infinite general linear group”, Proc. Edinburgh Math. Soc., 25 (1982), 81–86 | DOI | MR | Zbl