Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_6_a1, author = {A. S. Belov}, title = {Remarks on {Mean} {Convergence} {(Boundedness)} of {Partial} {Sums} of {Trigonometric} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {807--817}, publisher = {mathdoc}, volume = {71}, number = {6}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/} }
A. S. Belov. Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 807-817. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/
[1] Belov A. S., “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Izv. Tulskogo gos. universiteta. Ser. matem., mekh., informatika, 4:1 (1998), 40–46 | MR
[2] Belov A. S., “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, AFTs, M., 1999, 1–17 | MR
[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[4] Telyakovskii S. A., Fomin G. A., “O skhodimosti v metrike $L$ ryadov Fure s kvazimonotonnymi koeffitsientami”, Tr. MIAN, 134, Nauka, M., 1975, 310–313 | MR | Zbl
[5] Garret J. W., Rees C. S., Stanojević \v C. V., “On $L^1$-convergence of Fourier series with quasi-monotone coefficients”, Proc. Amer. Math. Soc., 72:3 (1978), 535–538 | DOI | MR | Zbl
[6] Telyakovskii S. A., “O skhodimosti v metrike $L$ trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Tr. MIAN, 200, Nauka, M., 1991, 322–326 | Zbl
[7] Fomin G. A., “O skhodimosti ryadov Fure v srednem”, Matem. sb., 110:2 (1979), 251–265 | MR | Zbl
[8] Fridli S., “On the $L^1$-convergence of Fourier series”, Studia. Math., 125:2 (1997), 161–174 | MR | Zbl