Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 807-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fairly general conditions on the coefficients $\{a_n\}_{n=1}^\infty$ of even and odd trigonometric Fourier series under which $L$-convergence (boundedness) of partial sums of the series is equivalent to the relation $\sum _{k=[n/2]}^{2n}|a_k|/(|n-k|+1)=o(1)$ ($=O(1)$, respectively) are given.
@article{MZM_2002_71_6_a1,
     author = {A. S. Belov},
     title = {Remarks on {Mean} {Convergence} {(Boundedness)} of {Partial} {Sums} of {Trigonometric} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {807--817},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series
JO  - Matematičeskie zametki
PY  - 2002
SP  - 807
EP  - 817
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/
LA  - ru
ID  - MZM_2002_71_6_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series
%J Matematičeskie zametki
%D 2002
%P 807-817
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/
%G ru
%F MZM_2002_71_6_a1
A. S. Belov. Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 807-817. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a1/

[1] Belov A. S., “Ob usloviyakh skhodimosti v srednem trigonometricheskikh ryadov Fure”, Izv. Tulskogo gos. universiteta. Ser. matem., mekh., informatika, 4:1 (1998), 40–46 | MR

[2] Belov A. S., “Ob usloviyakh skhodimosti (ogranichennosti) v srednem chastnykh summ trigonometricheskogo ryada”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, AFTs, M., 1999, 1–17 | MR

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[4] Telyakovskii S. A., Fomin G. A., “O skhodimosti v metrike $L$ ryadov Fure s kvazimonotonnymi koeffitsientami”, Tr. MIAN, 134, Nauka, M., 1975, 310–313 | MR | Zbl

[5] Garret J. W., Rees C. S., Stanojević \v C. V., “On $L^1$-convergence of Fourier series with quasi-monotone coefficients”, Proc. Amer. Math. Soc., 72:3 (1978), 535–538 | DOI | MR | Zbl

[6] Telyakovskii S. A., “O skhodimosti v metrike $L$ trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Tr. MIAN, 200, Nauka, M., 1991, 322–326 | Zbl

[7] Fomin G. A., “O skhodimosti ryadov Fure v srednem”, Matem. sb., 110:2 (1979), 251–265 | MR | Zbl

[8] Fridli S., “On the $L^1$-convergence of Fourier series”, Studia. Math., 125:2 (1997), 161–174 | MR | Zbl