On the Stability of Diagonal Actions
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 803-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note it is proved that, for an arbitrary action of a semisimple group $G$ on an affine variety $X$, there is a positive integer $n$ such that the diagonal action $G:X\times X\times\dotsb\times X$ ($m$ copies) is stable for any $m\ge n$.
@article{MZM_2002_71_6_a0,
     author = {I. V. Arzhantsev},
     title = {On the {Stability} of {Diagonal} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--806},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - On the Stability of Diagonal Actions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 803
EP  - 806
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/
LA  - ru
ID  - MZM_2002_71_6_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T On the Stability of Diagonal Actions
%J Matematičeskie zametki
%D 2002
%P 803-806
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/
%G ru
%F MZM_2002_71_6_a0
I. V. Arzhantsev. On the Stability of Diagonal Actions. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 803-806. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/

[1] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 55, VINITI, M., 1989, 137–314 | MR

[2] Panyushev D. I., “A restriction theorem and the Poincaré series for $U$-invariants”, Math. Ann., 301 (1995), 655–675 | DOI | MR | Zbl

[3] Vinberg E. B., “On stability of actions of reductive algebraic groups”, Lie Algebras, Rings and Related Topics, eds. Fong Yuen, A. A. Mikhalev, E. Zelmanov, Springer-Verlag, Hong-Kong, 2000, 188–202 | Zbl