On the Stability of Diagonal Actions
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 803-806
Cet article a éte moissonné depuis la source Math-Net.Ru
In the note it is proved that, for an arbitrary action of a semisimple group $G$ on an affine variety $X$, there is a positive integer $n$ such that the diagonal action $G:X\times X\times\dotsb\times X$ ($m$ copies) is stable for any $m\ge n$.
@article{MZM_2002_71_6_a0,
author = {I. V. Arzhantsev},
title = {On the {Stability} of {Diagonal} {Actions}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--806},
year = {2002},
volume = {71},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/}
}
I. V. Arzhantsev. On the Stability of Diagonal Actions. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 803-806. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a0/
[1] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 55, VINITI, M., 1989, 137–314 | MR
[2] Panyushev D. I., “A restriction theorem and the Poincaré series for $U$-invariants”, Math. Ann., 301 (1995), 655–675 | DOI | MR | Zbl
[3] Vinberg E. B., “On stability of actions of reductive algebraic groups”, Lie Algebras, Rings and Related Topics, eds. Fong Yuen, A. A. Mikhalev, E. Zelmanov, Springer-Verlag, Hong-Kong, 2000, 188–202 | Zbl