Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_5_a7, author = {H. S. Mustafaev}, title = {Banach {Algebras} with {Bounded} {Groups} of {Generators,} and the {Schur} {Property}}, journal = {Matemati\v{c}eskie zametki}, pages = {725--731}, publisher = {mathdoc}, volume = {71}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/} }
H. S. Mustafaev. Banach Algebras with Bounded Groups of Generators, and the Schur Property. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 725-731. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/
[1] Diestel J., Uhl J. J., Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, R.I., 1977 | MR | Zbl
[2] Lust-Piquard F., “L'Espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable a la propriete de Schur”, Colloq. Math., 41:2 (1979), 273–284 | MR | Zbl
[3] Lust-Piquard F., “Means on $CV_p(G)$, subspace of $CV_p(G)$ with RNP and Schur property”, Ann. Inst. Fourier (Grenoble), 39:4 (1989), 969–1006 | MR | Zbl
[4] Mustafayev H., Űlger A., “A class of Banach algebras whose duals have the Schur property”, Tr. J. Math., 23:3 (1999), 441–452 | MR | Zbl
[5] Arens R., “The adjoint of a bilinear operation”, Proc. Amer. Math. Soc., 2 (1951), 839–848 | DOI | MR | Zbl
[6] Duncan J., Hosseiniun S. A. R., “The second dual of a Banach algebra”, Proc. Royal Soc. Edinburgh. Ser. A, 84 (1979), 309–325 | MR | Zbl
[7] Brudnyi Yu. A., Gorin E. A., Izometricheskie predstavleniya i differentsialnye neravenstva, YaGU, Yaroslavl, 1981
[8] Lacey H., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, New York–Heidelberg, 1974 | Zbl
[9] Loomis L. H., “The spectral characterization of a class of almost periodic functions”, Ann. Math., 72 (1960), 362–368 | DOI | MR | Zbl