Banach Algebras with Bounded Groups of Generators, and the Schur Property
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 725-731
Voir la notice de l'article provenant de la source Math-Net.Ru
Recall that a Banach space $X$ is said to have the Schur property if any weakly compact set in $X$ is strongly compact. In this note we consider a Banach algebra $A$ that has a bounded group of generators. Along with other results, it is proved that if $A^*$ has the Schur property, then the Gelfand space of the algebra $A$ is a scattered set and, moreover, $A^*$ has the Radon–Nikodym property.
@article{MZM_2002_71_5_a7,
author = {H. S. Mustafaev},
title = {Banach {Algebras} with {Bounded} {Groups} of {Generators,} and the {Schur} {Property}},
journal = {Matemati\v{c}eskie zametki},
pages = {725--731},
publisher = {mathdoc},
volume = {71},
number = {5},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/}
}
H. S. Mustafaev. Banach Algebras with Bounded Groups of Generators, and the Schur Property. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 725-731. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/