Banach Algebras with Bounded Groups of Generators, and the Schur Property
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 725-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall that a Banach space $X$ is said to have the Schur property if any weakly compact set in $X$ is strongly compact. In this note we consider a Banach algebra $A$ that has a bounded group of generators. Along with other results, it is proved that if $A^*$ has the Schur property, then the Gelfand space of the algebra $A$ is a scattered set and, moreover, $A^*$ has the Radon–Nikodym property.
@article{MZM_2002_71_5_a7,
     author = {H. S. Mustafaev},
     title = {Banach {Algebras} with {Bounded} {Groups} of {Generators,} and the {Schur} {Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--731},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/}
}
TY  - JOUR
AU  - H. S. Mustafaev
TI  - Banach Algebras with Bounded Groups of Generators, and the Schur Property
JO  - Matematičeskie zametki
PY  - 2002
SP  - 725
EP  - 731
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/
LA  - ru
ID  - MZM_2002_71_5_a7
ER  - 
%0 Journal Article
%A H. S. Mustafaev
%T Banach Algebras with Bounded Groups of Generators, and the Schur Property
%J Matematičeskie zametki
%D 2002
%P 725-731
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/
%G ru
%F MZM_2002_71_5_a7
H. S. Mustafaev. Banach Algebras with Bounded Groups of Generators, and the Schur Property. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 725-731. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a7/

[1] Diestel J., Uhl J. J., Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, R.I., 1977 | MR | Zbl

[2] Lust-Piquard F., “L'Espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable a la propriete de Schur”, Colloq. Math., 41:2 (1979), 273–284 | MR | Zbl

[3] Lust-Piquard F., “Means on $CV_p(G)$, subspace of $CV_p(G)$ with RNP and Schur property”, Ann. Inst. Fourier (Grenoble), 39:4 (1989), 969–1006 | MR | Zbl

[4] Mustafayev H., Űlger A., “A class of Banach algebras whose duals have the Schur property”, Tr. J. Math., 23:3 (1999), 441–452 | MR | Zbl

[5] Arens R., “The adjoint of a bilinear operation”, Proc. Amer. Math. Soc., 2 (1951), 839–848 | DOI | MR | Zbl

[6] Duncan J., Hosseiniun S. A. R., “The second dual of a Banach algebra”, Proc. Royal Soc. Edinburgh. Ser. A, 84 (1979), 309–325 | MR | Zbl

[7] Brudnyi Yu. A., Gorin E. A., Izometricheskie predstavleniya i differentsialnye neravenstva, YaGU, Yaroslavl, 1981

[8] Lacey H., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, New York–Heidelberg, 1974 | Zbl

[9] Loomis L. H., “The spectral characterization of a class of almost periodic functions”, Ann. Math., 72 (1960), 362–368 | DOI | MR | Zbl