Surjectivity of Linear Differential Operators in a Weighted Space of Infinitely Differentiable Functions
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 713-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a sufficient condition for the surjectivity of a linear differential operator of infinite order with constant coefficients in a weighted space of infinitely differentiable functions on the real line.
@article{MZM_2002_71_5_a6,
     author = {I. Kh. Musin},
     title = {Surjectivity of {Linear} {Differential} {Operators} in a {Weighted} {Space} of {Infinitely} {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--724},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a6/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Surjectivity of Linear Differential Operators in a Weighted Space of Infinitely Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 713
EP  - 724
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a6/
LA  - ru
ID  - MZM_2002_71_5_a6
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Surjectivity of Linear Differential Operators in a Weighted Space of Infinitely Differentiable Functions
%J Matematičeskie zametki
%D 2002
%P 713-724
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a6/
%G ru
%F MZM_2002_71_5_a6
I. Kh. Musin. Surjectivity of Linear Differential Operators in a Weighted Space of Infinitely Differentiable Functions. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 713-724. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a6/

[1] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77 | MR

[2] Musin I. Kh., On the Fourier–Laplace transform of functionals on a weighted space of infinitely differentiable functions, , 1999 E-print funct-an/9911067

[3] Mandelbroit S., Primykayuschie ryady, regulyarizatsiya posledovatelnostei, primeneniya, IL, M., 1955

[4] Musin I. Kh., “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. sb., 191:10 (2000), 57–86 | MR | Zbl

[5] Musin I. Kh., “Teorema tipa Peli–Vinera dlya vesovogo prostranstva beskonechno differentsiruemykh funktsii”, Izv. RAN. Ser. matem., 64:6 (2000), 181–204 | MR | Zbl

[6] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982

[7] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, UMN, 47:6 (1992), 3–58 | MR | Zbl

[8] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–107

[9] Ehrenpreis L., “Solution of some problems of division, IV”, Amer. J. Math., 82 (1960), 522–588 | DOI | MR | Zbl

[10] Malgrange B., “Éxistence et approximation des solutions des équations aux derivées partielles et des équations de convolution”, Ann. Inst. Fourier (Grenoble), 6 (1955–56), 271–355 | MR

[11] Meise R., Taylor B. A., Vogt D., “Equivalence of slowly decreasing conditions and local Fourier expansions”, Indiana Univ. Math. J., 36 (1987), 729–756 | DOI | MR | Zbl

[12] Momm S., “Closed ideals in nonradial Hörmander algebras”, Arch. Math., 58 (1992), 47–55 | DOI | MR | Zbl

[13] Braun R. W., Meise R., Vogt D., “Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on $\mathbb R^N$”, Math. Nachr., 168 (1994), 19–54 | MR | Zbl

[14] Bjorck G., “Linear partial differential operators and generalized distributions”, Ark. Mat., 6 (1965), 351–407 | DOI | MR

[15] Braun R. W., Meise R., Taylor B. A., “Ultradifferentiable functions and Fourier analysis”, Results in Math., 17 (1990), 205–237 | MR

[16] Korobeinik I. F., “O beskonechno differentsiruemykh resheniyakh lineinogo differentsialnogo uravneniya beskonechnogo poryadka”, Sib. matem. zh., 6:3 (1965), 516–527 | MR

[17] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, GITTL, M.–L., 1948

[18] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Analysis Math., 11:3 (1985), 257–282 | DOI | MR | Zbl