Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 677-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.
@article{MZM_2002_71_5_a3,
     author = {V. L. Kurakin},
     title = {Hopf {Algebra} {Dual} to a {Polynomial} {Algebra} over a {Commutative} {Ring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--685},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
JO  - Matematičeskie zametki
PY  - 2002
SP  - 677
EP  - 685
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/
LA  - ru
ID  - MZM_2002_71_5_a3
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
%J Matematičeskie zametki
%D 2002
%P 677-685
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/
%G ru
%F MZM_2002_71_5_a3
V. L. Kurakin. Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 677-685. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/

[1] Sweedler M. F., Hopf Algebras, Benjamin, New York, 1969 | Zbl

[2] Artamonov V. A., “Stroenie algebr Khopfa”, Itogi nauki i tekhniki. Algebra, geometriya, topologiya, 29, VINITI, M., 1991, 3–63

[3] Maklein S., Gomologiya, Mir, M., 1966

[4] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | Zbl

[5] Kurakin V. L., “Algebry Khopfa lineinykh rekurrentnykh posledovatelnostei nad kommutativnymi koltsami”, Trudy vtorykh matematicheskikh chtenii MGSU (Nakhabino, 26 yanvarya–2 fevralya 1994 g.), M., 1994, 67–69

[6] Peterson B., Taft E. Y., “The Hopf algebra of linear recursive sequences”, Aequat. Math., 20 (1980), 1–17 | DOI | MR | Zbl

[7] Cerlienco L., Piras F., “On the continuous dual of a polynomial bialgebra”, Comm. Algebra, 19:10 (1991), 2707–2727 | DOI | MR | Zbl

[8] Kurakin V. L., “Konvolyutsiya lineinykh rekurrentnykh posledovatelnostei”, UMN, 48:4 (1993), 235–236 | MR | Zbl

[9] Kurakin V. L., “Stroenie algebr Khopfa lineinykh rekurrentnykh posledovatelnostei”, UMN, 48:5 (1993), 177–178 | MR | Zbl

[10] Chin W., Goldman J., “Bialgebras of linearly recursive sequences”, Comm. Algebra, 21:11 (1993), 3935–3952 | DOI | MR | Zbl

[11] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[12] Abuhlail J. Y., Gómez-Torrecillas J., Wisbauer R., “Dual coalgebras of algebras over commutative rings”, J. Pure Appl. Algebra, 153 (2000), 107–120 | DOI | MR | Zbl

[13] Lu P., Song G., Zhou J., “Tensor product with application to linear recurring sequences”, J. Math. Res. Exposition, 12:4 (1992), 551–558 | MR | Zbl

[14] Kurakin V. L., Algebry Khopfa lineinykh rekurrentnykh posledovatelnostei nad koltsami i modulyami, Podgotovleno dlya opublikovaniya