Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 677-685

Voir la notice de l'article provenant de la source Math-Net.Ru

For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.
@article{MZM_2002_71_5_a3,
     author = {V. L. Kurakin},
     title = {Hopf {Algebra} {Dual} to a {Polynomial} {Algebra} over a {Commutative} {Ring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--685},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
JO  - Matematičeskie zametki
PY  - 2002
SP  - 677
EP  - 685
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/
LA  - ru
ID  - MZM_2002_71_5_a3
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
%J Matematičeskie zametki
%D 2002
%P 677-685
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/
%G ru
%F MZM_2002_71_5_a3
V. L. Kurakin. Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 677-685. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a3/