Moduli Spaces of Maslov Complex Germs
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 751-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maslov complex germs (complex vector bundles, satisfying certain additional conditions, over isotropic submanifolds of the phase space) are one of the central objects in the theory of semiclassical quantization. To these bundles one assigns spectral series (quasimodes) of partial differential operators. We describe the moduli spaces of Maslov complex germs over a point and a closed trajectory and find the moduli of complex germs generated by a given symplectic connection over an invariant torus.
@article{MZM_2002_71_5_a10,
     author = {S. E. Roganova},
     title = {Moduli {Spaces} of {Maslov} {Complex} {Germs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--760},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/}
}
TY  - JOUR
AU  - S. E. Roganova
TI  - Moduli Spaces of Maslov Complex Germs
JO  - Matematičeskie zametki
PY  - 2002
SP  - 751
EP  - 760
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/
LA  - ru
ID  - MZM_2002_71_5_a10
ER  - 
%0 Journal Article
%A S. E. Roganova
%T Moduli Spaces of Maslov Complex Germs
%J Matematičeskie zametki
%D 2002
%P 751-760
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/
%G ru
%F MZM_2002_71_5_a10
S. E. Roganova. Moduli Spaces of Maslov Complex Germs. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 751-760. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/

[1] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[2] Maslov V. P., Shvedov O. Yu., Metod kompleksnogo rostka v zadache mnogikh chastits i v kvantovoi teorii polya, Editorial URSS, M., 2000

[3] Babich V. M., “Sobstvennye funktsii, sosredotochennye v okrestnosti zamknutoi geodezicheskoi”, Zapiski nauchnykh seminarov LOMI, 9, Nauka, L., 1968, 15–63 | Zbl

[4] Belov V. V., Dobrokhotov S. Yu., “Kanonicheskii operator Maslova na izotropnykh mnogoobraziyakh s kompleksnym rostkom i ego prilozheniya k spektralnym zadacham”, Dokl. AN SSSR, 298:5 (1988), 1037–1042

[5] Belov V. V., Dobrokhotov S. Yu., “Kvaziklassicheskie asimptotiki Maslova s kompleksnymi fazami. I: Obschii podkhod”, TMF, 92:2 (1992), 215–254 | MR

[6] Belov V. V., Dobrokhotov O. S., Dobrokhotov S. Yu., “Izotropnye tory, kompleksnyi rostok i indeks Maslova, normalnye formy i kvazimody mnogomernykh spektralnykh zadach”, Matem. zametki, 69:4 (2001), 483–514 | MR | Zbl

[7] Vorobev Yu. M., “Kompleksnyi rostok Maslova, porozhdennyi lineinoi svyaznostyu”, Matem. zametki, 48:6 (1990), 29–37 | MR | Zbl

[8] Vorobev Yu. M., “O kvantovanii izotropnykh torov v nekotorykh neintegriruemykh sluchayakh”, UMN, 45:4 (1990), 127

[9] Vorobev Yu. M., Itskov V. A., “Kvazimody, otvechayuschie pochti periodicheskomu dvizheniyu ustoichivogo tipa”, Matem. zametki, 55:5 (1994), 36–42 | MR | Zbl

[10] Dobrokhotov S. Yu., Martines Olive V., “Zamknutye traektorii i dvumernye tory v kvantovoi spektralnoi zadache dlya trekhmernogo angarmonicheskogo ostsillyatora”, Tr. MMO, 58, URSS, M., 1997, 4–87

[11] Dobrokhotov S. Yu., Martines Olive V., Shafarevich A. I., “Zamknutye traektorii i dvumernye tory v kvantovoi zadache Keplera s peremennoi anizotropiei”, Dokl. RAN, 355:3 (1997), 299–302 | MR | Zbl

[12] Krakhnov A. D., “Asimptotika sobstvennykh znachenii psevdodifferentsialnykh operatorov i invariantnye tory”, UMN, 31:3 (1976), 217–218 | MR | Zbl

[13] Topologicheskie metody v teorii gamiltonovykh sistem, eds. Bolsinov A. B., Fomenko A. T., Shafarevich A. I., Faktorial, M., 1998

[14] Dobrokhotov S. Yu., Martinez-Olive V., Shafarevich A. I., “Closed trajectories and two-dimensional tori in the quantum problem for a three-dimensional resonant anharmonic oscillator”, Russ. J. Math. Phys., 3:1 (1995), 133–138 | MR | Zbl

[15] Dobrokhotov S. Yu., Shafarevich A. I., “Quantum selection in semi-classical approximation of isotropic tori in partially integrable Hamiltonian systems”, Russ. J. Math. Phys., 5:2 (1998), 267–272 | MR

[16] Duistermaat J. T., Guillemin V. W., “The spectrum of positive operators and periodic bicharacteristics”, Inventions Math., 29 (1975), 39–79 | DOI | MR | Zbl

[17] Guillemin V. W., Weinstein A., “Eigenvalues associated with geodesics”, Bull. Amer. Math. Soc., 82:1 (1976), 92–94 | DOI | MR | Zbl

[18] Karasev M. V., Vorobjev Yu. M., Integral representation over isotropic submanifolds and equations of zero curvature, Preprint MIEM, 1992

[19] Ralston J. V., “On the construction of quasimodes associated with stable periodic orbits”, Comm. Math. Phys., 51 (1976), 219–242 | DOI | MR | Zbl

[20] Voros A., The WKB-Maslov method for non-separable systems, C.N.R.S.S.

[21] Dobrokhotov S. Yu., Valino B., Nekhoroshev N. N., “Kompleksnyi rostok v sistemakh s odnoi tsiklicheskoi peremennoi”, UMN, 39:3 (1984), 233–234 | MR | Zbl