Moduli Spaces of Maslov Complex Germs
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 751-760

Voir la notice de l'article provenant de la source Math-Net.Ru

Maslov complex germs (complex vector bundles, satisfying certain additional conditions, over isotropic submanifolds of the phase space) are one of the central objects in the theory of semiclassical quantization. To these bundles one assigns spectral series (quasimodes) of partial differential operators. We describe the moduli spaces of Maslov complex germs over a point and a closed trajectory and find the moduli of complex germs generated by a given symplectic connection over an invariant torus.
@article{MZM_2002_71_5_a10,
     author = {S. E. Roganova},
     title = {Moduli {Spaces} of {Maslov} {Complex} {Germs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--760},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/}
}
TY  - JOUR
AU  - S. E. Roganova
TI  - Moduli Spaces of Maslov Complex Germs
JO  - Matematičeskie zametki
PY  - 2002
SP  - 751
EP  - 760
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/
LA  - ru
ID  - MZM_2002_71_5_a10
ER  - 
%0 Journal Article
%A S. E. Roganova
%T Moduli Spaces of Maslov Complex Germs
%J Matematičeskie zametki
%D 2002
%P 751-760
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/
%G ru
%F MZM_2002_71_5_a10
S. E. Roganova. Moduli Spaces of Maslov Complex Germs. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 751-760. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a10/