Multipliers in Dual Sobolev Spaces and Schr\"odinger Operators with Distribution Potentials
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 643-651.

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain sufficient conditions for functions to be embedded in the space of multipliers from the Sobolev space $H^\alpha _p({\mathbb R}^n)$ to the dual space $H^{-\alpha }_{p'}({\mathbb R}^n)$ are obtained in the present paper. In the case $\alpha >n/p$ a criterion is found, i.e., a precise description of these spaces of multipliers is given. The obtained results are applied to define the Schödinger operator with distribution potentials.
@article{MZM_2002_71_5_a0,
     author = {A. A. Shkalikov and J. Bak},
     title = {Multipliers in {Dual} {Sobolev} {Spaces} and {Schr\"odinger} {Operators} with {Distribution} {Potentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--651},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a0/}
}
TY  - JOUR
AU  - A. A. Shkalikov
AU  - J. Bak
TI  - Multipliers in Dual Sobolev Spaces and Schr\"odinger Operators with Distribution Potentials
JO  - Matematičeskie zametki
PY  - 2002
SP  - 643
EP  - 651
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a0/
LA  - ru
ID  - MZM_2002_71_5_a0
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%A J. Bak
%T Multipliers in Dual Sobolev Spaces and Schr\"odinger Operators with Distribution Potentials
%J Matematičeskie zametki
%D 2002
%P 643-651
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a0/
%G ru
%F MZM_2002_71_5_a0
A. A. Shkalikov; J. Bak. Multipliers in Dual Sobolev Spaces and Schr\"odinger Operators with Distribution Potentials. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 643-651. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a0/

[1] Mazya V. G., Shaposhnikova T. O., Teoriya multiplikatorov v prostranstvakh differentsiruemykh funktsii, Izd-vo Leningradskogo un-ta, 1986 | Zbl

[2] Neiman-zade M. I., Shkalikov A. A., “Operatory Shrëdingera s singulyarynmi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | MR | Zbl

[3] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i Fure analiz, Mir, M., 1990

[4] Strichartz R. S., “Multipliers in fractional Sobolev spaces”, J. Math. Mech., 16 (1967), 1031–1060 | MR | Zbl

[5] Bergh J., Löfström J., “Interpolation Spaces”, Grund. der math. Wiss., 223, Springer-Verlag, Berlin, 1976 | MR | Zbl

[6] Polking J. C., “A Leibniz formula for some differential operators of fractional order”, Indiana Univ. Math. J., 27 (1972), 1019–1029 | DOI | MR

[7] Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970

[8] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 64:6 (1999), 897–912 | MR