The Space of Simple Configurations is Polish
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 581-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the space of configurations without multiple points on a smooth Riemannian manifold is Polish with respect to the weak topology; a criterion for a subspace of this space to be precompact is given.
@article{MZM_2002_71_4_a9,
     author = {O. V. Pugachev},
     title = {The {Space} of {Simple} {Configurations} is {Polish}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--589},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a9/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - The Space of Simple Configurations is Polish
JO  - Matematičeskie zametki
PY  - 2002
SP  - 581
EP  - 589
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a9/
LA  - ru
ID  - MZM_2002_71_4_a9
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T The Space of Simple Configurations is Polish
%J Matematičeskie zametki
%D 2002
%P 581-589
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a9/
%G ru
%F MZM_2002_71_4_a9
O. V. Pugachev. The Space of Simple Configurations is Polish. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a9/

[1] Albeverio S., Daletskii A., Lytvynov E., “Laplace operators on differential forms over configuration spaces”, J. Geom. Phys. (to appear)

[2] Bichteler K., Gravereaux J. B., Jacod J., Malliavin Calculus for Processes with Jumps, Gordon Breach Sci. Publ., 1987 | Zbl

[3] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Fizmatlit, M., 1995 | Zbl

[4] Röckner M., “Stochastic analysis on configuration spaces: Basic ideas and recent results”, New Directions in Dirichlet Forms, Studies in Advanced Math., 8, Amer. Math. Soc., Providence (R.I.), 1998

[5] Röckner M., Schmuland B., “A support property for infinite-dimensional interacting diffusion processes”, C. R. Acad. Sci. Paris. Sér. I, 326 (1998), 359–364 | MR | Zbl

[6] Smorodina N. V., “Differentsialnoe ischislenie v prostranstve konfiguratsii i ustoichivye mery, I”, Teor. veroyatn. i prilozh., 33 (1988), 522–534 | MR

[7] Smorodina N. V., “Formula Gaussa–Ostrogradskogo dlya prostranstva konfiguratsii”, Teor. veroyatn. i prilozh., 35:4 (1990), 727–739 | MR | Zbl

[8] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces”, J. Funct. Anal., 154:2 (1998), 444–500 | DOI | MR | Zbl

[9] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl

[10] Bogachev V. I., Pugachev O. V., Röckner M., “Surface measures and tightness of capacities on Poisson space”, J. Funct. Anal. (to appear)

[11] Ma Zhi-Ming, Röckner M., “Construction of diffusions on configuration spaces”, Osaka J. Math., 37 (2000), 273–314 | MR

[12] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[13] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983