Some Examples of Nonhypoelliptic Infinitely Degenerate Elliptic Differential Operators
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 567-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains examples of nonhypoelliptic infinitely degenerate elliptic differential operators. Global nonsmooth solutions of the corresponding homogeneous equations are constructed.
@article{MZM_2002_71_4_a8,
     author = {Nguyen Minh Tri},
     title = {Some {Examples} of {Nonhypoelliptic} {Infinitely} {Degenerate} {Elliptic} {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--580},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a8/}
}
TY  - JOUR
AU  - Nguyen Minh Tri
TI  - Some Examples of Nonhypoelliptic Infinitely Degenerate Elliptic Differential Operators
JO  - Matematičeskie zametki
PY  - 2002
SP  - 567
EP  - 580
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a8/
LA  - ru
ID  - MZM_2002_71_4_a8
ER  - 
%0 Journal Article
%A Nguyen Minh Tri
%T Some Examples of Nonhypoelliptic Infinitely Degenerate Elliptic Differential Operators
%J Matematičeskie zametki
%D 2002
%P 567-580
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a8/
%G ru
%F MZM_2002_71_4_a8
Nguyen Minh Tri. Some Examples of Nonhypoelliptic Infinitely Degenerate Elliptic Differential Operators. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 567-580. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a8/

[1] Hoshiro T., “Some examples of hypoelliptic operators of infinitely degenerate type”, Osaka J. Math., 30 (1993), 771–782 | MR | Zbl

[2] Reissig M., Yagdjan K., “An interesting connection between hypoellipticity and branching phenomena for certain differential operators with degeneracy of infinite order”, Rend. Mat. Appl. (7), 15 (1995), 481–510 | MR | Zbl

[3] Tri N. M., “Non-smooth solutions for a class of infinitely degenerate elliptic differential operators”, Vietnam J. Math., 28 (2000), 159–172 | MR | Zbl

[4] Gilioli A., Treves F., “An example in the solvability theory of linear PDEs”, Amer. J. Math., 96 (1974), 367–385 | DOI | MR | Zbl

[5] Menikoff A., “Some examples of hypoelliptic partial differential equations”, Math. Ann., 221 (1976), 176–181 | DOI | MR

[6] Helffer B., Rodino L., “Opérateurs différentiels ordinaires intervenant dans l'étude de l'hypoellipticité”, Boll. U.M.I., 14-B (5) (1977), 491–522 | MR | Zbl

[7] Tri N. M., “Remark on non-uniform fundamental solutions and non-smooth solutions of a class of differential operators with double characteristics”, J. Math. Sci. Univ. Tokyo, 6 (1999), 437–452 | MR | Zbl

[8] Tri N. M., “Note on necessary conditions of hypoellipticity of some classes of differential operators with double characteristics”, Kodai Math. J., 23 (2000), 281–297 | DOI | MR

[9] Fedii V. S., “Ob odnom uslovii gipoelliptichnosti”, Matem. sb., 85 (1971), 18–48 | MR | Zbl

[10] Morimoto Y., Morioka T., “The positivity of Schrödinger operators and the hypoellipticity of second-order degenerate elliptic operators”, Bull. Sci. Math., 121 (1997), 507–547 | MR | Zbl