$K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 522-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

For classes of $2\pi$-periodic functions whose $K$-functionals are majorized by functions satisfying certain constraints, exact values of Kolmogorov, Bernstein, and trigonometric $n$-widths in the spaces $C(2\pi )$ and $L_1(2\pi )$ are obtained. Examples of majorants that satisfy the requirements stated in this paper are given.
@article{MZM_2002_71_4_a3,
     author = {S. B. Vakarchuk},
     title = {$K${-Functionals} and {Exact} {Values} of {n-Widths} of {Certain} {Classes} in the {Spaces} $C(2\pi )$ and $L_1(2\pi )$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {522--531},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 522
EP  - 531
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/
LA  - ru
ID  - MZM_2002_71_4_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$
%J Matematičeskie zametki
%D 2002
%P 522-531
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/
%G ru
%F MZM_2002_71_4_a3
S. B. Vakarchuk. $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 522-531. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/

[1] DeVore R. A., “Degree of approximation”, Approximation Theory, V. II, eds. G. G. Lorents, C. K. Chui, L. L. Schumaker, Acad. Press, New York, 1976, 117–161 | MR

[2] Korneichuk N. P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976

[3] Schumaker L. L., Spline Functions: Basic Theory, John Wiley, New York, 1981 | Zbl

[4] Vakarchuk S. B., “Widths of functional classes and extremal subspaces”, 9th Intern. Conf. on Approximation Theory, Abstracts (Nashville, Tennessee, USA, January 3–6, 1998), 1998, 57–58

[5] Vakarchuk S. B., “On the widths of functional classes and the best linear methods of approximation”, Teoriya priblizhenii i garmonicheskii analiz, Tezisy dokl. Mezhdunar. konf. (Tula, 26–29 maya 1998 g.), 1998, 295–296

[6] Vakarchuk S. B., “O nailuchshikh lineinykh metodakh priblizheniya i poperechnikakh nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 65:2 (1999), 186–193 | MR | Zbl