Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_4_a3, author = {S. B. Vakarchuk}, title = {$K${-Functionals} and {Exact} {Values} of {n-Widths} of {Certain} {Classes} in the {Spaces} $C(2\pi )$ and $L_1(2\pi )$}, journal = {Matemati\v{c}eskie zametki}, pages = {522--531}, publisher = {mathdoc}, volume = {71}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/} }
TY - JOUR AU - S. B. Vakarchuk TI - $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$ JO - Matematičeskie zametki PY - 2002 SP - 522 EP - 531 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/ LA - ru ID - MZM_2002_71_4_a3 ER -
S. B. Vakarchuk. $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 522-531. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a3/
[1] DeVore R. A., “Degree of approximation”, Approximation Theory, V. II, eds. G. G. Lorents, C. K. Chui, L. L. Schumaker, Acad. Press, New York, 1976, 117–161 | MR
[2] Korneichuk N. P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976
[3] Schumaker L. L., Spline Functions: Basic Theory, John Wiley, New York, 1981 | Zbl
[4] Vakarchuk S. B., “Widths of functional classes and extremal subspaces”, 9th Intern. Conf. on Approximation Theory, Abstracts (Nashville, Tennessee, USA, January 3–6, 1998), 1998, 57–58
[5] Vakarchuk S. B., “On the widths of functional classes and the best linear methods of approximation”, Teoriya priblizhenii i garmonicheskii analiz, Tezisy dokl. Mezhdunar. konf. (Tula, 26–29 maya 1998 g.), 1998, 295–296
[6] Vakarchuk S. B., “O nailuchshikh lineinykh metodakh priblizheniya i poperechnikakh nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 65:2 (1999), 186–193 | MR | Zbl