A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 508-521

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of the variation (if any) of the sets of convergence and divergence everywhere or almost everywhere of a multiple Fourier series (integral) of a function $f\in L_p$, $p\ge 1$, $f(x)=0$, on a set of positive measure $\mathfrak A\subset \mathbb T^N=[-\pi ,\pi )^N$, $N\ge 2$, depending on the rotation of the coordinate system, i.e., depending on the element $\tau \in \mathcal F$, where $\mathcal F$ is the rotation group about the origin in $\mathbb R^N$. This problem has been reduced to the study of the change in the geometry of the sets $\tau ^{-1}({\mathfrak A})\cap \mathbb T^N$ (where $\tau ^{-1}\in \mathcal F$ satisfies $\tau ^{-1}\cdot \tau =1$) and $\mathbb T^N\setminus \operatorname {supp}(f\circ \tau )$ depending on the rotation, i.e., on $\tau \in \mathcal F$. In the present paper, we consider two settings of this problem (depending on the sense in which the Fourier series of the function $f\circ \tau $ is understood) and give (for both cases) possible solutions of the problem in the class $L_1(\mathbb T^N)$, $N\ge 2$.
@article{MZM_2002_71_4_a2,
     author = {I. L. Bloshanskii},
     title = {A {Criterion} for {Weak} {Generalized} {Localization} in the {Class} $L_1$ for {Multiple} {Trigonometric} {Series} from the {Viewpoint} of {Isometric} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {508--521},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 508
EP  - 521
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/
LA  - ru
ID  - MZM_2002_71_4_a2
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
%J Matematičeskie zametki
%D 2002
%P 508-521
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/
%G ru
%F MZM_2002_71_4_a2
I. L. Bloshanskii. A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 508-521. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/