A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 508-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem of the variation (if any) of the sets of convergence and divergence everywhere or almost everywhere of a multiple Fourier series (integral) of a function $f\in L_p$, $p\ge 1$, $f(x)=0$, on a set of positive measure $\mathfrak A\subset \mathbb T^N=[-\pi ,\pi )^N$, $N\ge 2$, depending on the rotation of the coordinate system, i.e., depending on the element $\tau \in \mathcal F$, where $\mathcal F$ is the rotation group about the origin in $\mathbb R^N$. This problem has been reduced to the study of the change in the geometry of the sets $\tau ^{-1}({\mathfrak A})\cap \mathbb T^N$ (where $\tau ^{-1}\in \mathcal F$ satisfies $\tau ^{-1}\cdot \tau =1$) and $\mathbb T^N\setminus \operatorname {supp}(f\circ \tau )$ depending on the rotation, i.e., on $\tau \in \mathcal F$. In the present paper, we consider two settings of this problem (depending on the sense in which the Fourier series of the function $f\circ \tau $ is understood) and give (for both cases) possible solutions of the problem in the class $L_1(\mathbb T^N)$, $N\ge 2$.
@article{MZM_2002_71_4_a2,
     author = {I. L. Bloshanskii},
     title = {A {Criterion} for {Weak} {Generalized} {Localization} in the {Class} $L_1$ for {Multiple} {Trigonometric} {Series} from the {Viewpoint} of {Isometric} {Transformations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {508--521},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 508
EP  - 521
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/
LA  - ru
ID  - MZM_2002_71_4_a2
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
%J Matematičeskie zametki
%D 2002
%P 508-521
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/
%G ru
%F MZM_2002_71_4_a2
I. L. Bloshanskii. A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 508-521. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a2/

[1] Saakyan A. A., “O teoreme Bora dlya kratnykh ryadov Fure”, Matem. zametki, 64:6 (1998), 913–924 | MR | Zbl

[2] Fefferman Ch., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[3] Galstyan S. Sh., Karagulyan G. A., “O raskhodimosti pochti vsyudu pryamougolnykh chastichnykh summ kratnykh ryadov Fure ogranichennykh funktsii”, Matem. zametki, 64:1 (1998), 24–36 | MR | Zbl

[4] Bohr H., “Über einen Satz von J. Pal”, Acta Sci. Math. (Szeged), 7 (1935), 129–135 | Zbl

[5] Olevskii A. M., “Zamena peremennykh i absolyutnaya skhodimost ryadov Fure”, Dokl. AN SSSR, 256:2 (1981), 284–287 | MR | Zbl

[6] Kahane J. P., “Quatre leçons sur les homéomorphismes du cercle et les séries de Fourier”, Proc. Sem. Torino and Milano, V. 2, Roma, 1983, 955–990

[7] Olevskii A. M., “Modifikatsii funktsii i ryady Fure”, UMN, 40:3 (1985), 157–193 | MR | Zbl

[8] Olevskii A. M., “Homeomorphisms of the Circle, Modifications of Functions and Fourier Series”, Proc. Intern. Congress Math., V. 2, Berkley, 1986, 976–989; Amer. Math. Soc. Transl., 1990, no. 2, 51–64

[9] Dragoshanskii O. S., “O skhodimosti i raskhodimosti dvoinykh ryadov Fure funktsii pri povorotakh sistemy koordinat”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokl., Voronezh, 1999, 13

[10] Bloshanskii I. L., “O geometrii izmerimykh mnozhestv v $N$-mernom prostranstve, na kotorykh spravedliva obobschennaya lokalizatsiya dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$”, Matem. sb., 121:1 (1983), 87–110 | MR

[11] Bloshanskii I. L., “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$”, Izv. AN SSSR. Seriya matem., 49:2 (1985), 243–282 | MR

[12] Bloshanskii I. L., “O nekotorykh voprosakh skhodimosti kratnykh ryadov i integralov Fure funktsii iz $L_1$ pri summirovanii po kvadratam”, Dokl. AN SSSR, 294:1 (1987), 15–18 | MR

[13] Bloshanskii I. L., “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na zadannom mnozhestve”, Izv. AN SSSR. Seriya matem., 53:4 (1989), 675–707

[14] Bloshanskii I. L., Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Avtoreferat diss. ... d. f.-m. n., MIAN, M., 1991

[15] Bloshanskii I. L., “Kriterii SOL dlya kratnykh razlozhenii Fure s tochki zreniya izometricheskikh preobrazovanii”, Teoriya priblizheniya funktsii i operatorov, Tezisy dokl. Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhd. S. B. Stechkina, Ekaterinburg, 2000, 40–42

[16] Bloshanskii I. L., “O mnozhestvakh neogranichennoi raskhodimosti v kazhdoi tochke kratnogo ryada Fure funktsii, ravnoi nulyu na zamknutom mnozhestve”, Anal. Math., 26 (2000), 81–98 | DOI | MR